期刊文献+

流体模拟的压缩感知上采样方法研究 被引量:1

Compressed-sensing Based Up-sampling Method for Fluid Simulation
下载PDF
导出
摘要 在计算机流体动画模拟中,欧拉网格方法是一种比较成熟和常用的模拟方法,但其关键瓶颈在于数据采样环节,受限于传统的Nyquist采样理论,难以缩减流场中的海量数据采样和计算。针对这一问题,基于压缩感知理论,探究流体动画中突破传统数据采样的局限性的方法。通过研究流体速度场数据的稀疏性和可压缩性特征,选取了适合于流体模拟的采样基、压缩基和重构算法,建立流体模拟的压缩感知上采样方法的框架。多种场景下的模拟结果显示,流体模拟的压缩感知上采样方法可以一定程度上恢复得到流场的细节,验证了压缩感知理论在流体动画上应用的可行性。 In computer fluid animation, the grid-based Euler method is a well-matured and effective way of simulating fluids, but a key bottleneck of Euler method is that it is limited to the traditional Nyquist-Shannon sampling theorem in sampling step. So it cannot effectively reduce the massive data and computing of the large-scale flow fields. In order to solve this problem, compressed sensing theory was used to probe a way to break through the limitation of the sampling theorem in fluid simulation. The sparsity and compressibility of fluid data were explored, then applicable sampling function, compressive basis and reconstruction algorithm for fluid data are selected. A compressed-sensing based up-sampling method and framework for fluid simulation was constructed based on researches and experiments. Several scenes of smoke animation were presented, the results show that compressed-sensing based up-sampling method can recover the details of the flow field to a certain extent, and prove the compressed sensing theory can apply to fluid simulation.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第7期1426-1434,共9页 Journal of System Simulation
基金 国家自然科学基金项目(61173105)
关键词 流体模拟 压缩感知 上采样 稀疏表示 重构算法 fluid simulation compressed sensing up-sampling sparse representation reconstruction algorithm
  • 相关文献

参考文献20

  • 1Yubo Zhang,Kwan-Liu Ma.Spatio-temporal extrapolation for fluid animation[J]. ACM Transactions on Graphics (TOG) . 2013 (6)
  • 2Kshitij Marwah,Gordon Wetzstein,Yosuke Bando,Ramesh Raskar.Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Transactions on Graphics (TOG) . 2013 (4)
  • 3Bo Zhu,Wenlong Lu,Matthew Cong,Byungmoon Kim,Ronald Fedkiw.A new grid structure for domain extension[J]. ACM Transactions on Graphics (TOG) . 2013 (4)
  • 4Xiaoyue Wu,Xubo Yang,Yang Yang.A Novel Projection Technique with Detail Capture and Shape Correction for Smoke Simulation[J]. Computer Graphics Forum . 2013 (2pt4)
  • 5Tobias Pfaff,Nils Thuerey,Jonathan Cohen,Sarah Tariq,Markus Gross.Scalable fluid simulation using anisotropic turbulence particles[J]. ACM Transactions on Graphics (TOG) . 2010 (6)
  • 6Michael Lentine,Wen Zheng,Ronald Fedkiw.A novel algorithm for incompressible flow using only a coarse grid projection[J]. ACM Transactions on Graphics (TOG) . 2010 (4)
  • 7Martin Wicke,Matt Stanton,Adrien Treuille.Modular bases for fluid dynamics[J]. ACM Transactions on Graphics (TOG) . 2009 (3)
  • 8Theodore Kim,Nils Thürey,Doug James,Markus Gross.Wavelet turbulence for fluid simulation[J]. ACM Transactions on Graphics (TOG) . 2008 (3)
  • 9MichaelLustig,DavidDonoho,John M.Pauly.Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn. Reson. Med. . 2007 (6)
  • 10Adrien Treuille,Andrew Lewis,Zoran Popovi?.Model reduction for real-time fluids[J]. ACM Transactions on Graphics (TOG) . 2006 (3)

共引文献23

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部