期刊文献+

基于自学习特征与HMM的人体动作识别(英文) 被引量:3

Human Action Recognition Based on Self-Learning Feature and HMM
下载PDF
导出
摘要 利用机器视觉进行人体动作识别的方法大多数基于手工特征并需要先验知识,这类方法不可避免地依赖于特定问题而忽略了视觉信息的内在结构。提出了一种利用自学习特征及姿态组合规则进行有效动作识别的新方法。使用稀疏自编码(SAE)网络提取轮廓图像的结构特征并构造姿态码本。在识别阶段,使用隐马可夫模型(HMM)训练不同动作类别的模型。设计了一种关键帧提取算法用于在训练HMM前降低长序列的冗余度。通过仿真实验验证了该方法的有效性。 The current methods of human action recognition by computer vision are mostly based on hand-craft features and usually prior knowledge-required. They inevitably depend on specific applications and neglect the inner structure of visional information. A novel method which integrated self-learned pose features and combined posture symbol rules was proposed to achieve the recognition of human action more efficiently. The structural features of posture silhouette were extracted and a codebook of primary posture was built through the establishment of a sparse auto-encoder network. Then, in the phase of recognition, the Hidden Markov Model was employed to train the models for different action categories. Besides, a key frame extraction algorithm was developed to reduce the redundancy of long code sequence before training HMMs. Simulation experiments manifest the effectiveness of the proposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第8期1782-1789 1795,1795,共9页 Journal of System Simulation
关键词 动作识别 自学习特征 SAE HMM 姿态码本 pose recognition self-learned feature SAE HMM posture codebook
  • 相关文献

参考文献10

  • 1LeCun L,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition. Proceedings of Tricomm . 1998
  • 2Ng A.Sparse autoencoder. CS294A Lecture notes . 2011
  • 3P. L,Yoshua Bengio,Dan Popovici,Hugo Larochelle."Greedy LayerWise Training of Deep Networks". NIPS 2006 . 2007
  • 4Rabiner LR.A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of Tricomm . 1989
  • 5Xu Suping.Research on Human Detection based on Feature Learning in Depth Image. . 2014
  • 6YC Lin,MC Hu,WH Cheng,et al.Human Action Recognition and Retrieval Using Sole Depth Information. Proc.20th ACM Int’’l Conf.Multimedia (MM’’12) . 2012
  • 7Liang Penghua.Research of Human Action Recognition Based on HMM. . 2012
  • 8Li-li Zheng.the Study of Abnormal Human Behavior Detection Algorithm Based on SVM. . 2012
  • 9Ahad MAR,Ogata T,Tan JK,et al.Moment-based human motion recognition from the representation of DMHI templates. Sice Conference . 2008
  • 10Xiang L,Hang R,et al.Stacked Sparse Autoencoder (SSAE)based framework for nuclei patch classification on breast cancer histopathology. Biomedical Imaging (ISBI) 2014 IEEE 11th International Symposium on . 2014

共引文献3

同被引文献25

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部