摘要
使用最优控制法则,进行五连杆手臂在受限制空间中的最低能耗控制研究。拉格朗日-欧拉方程描述了控制器与动态力学的关系,欧拉-拉格朗日公式规范了最优状况下的必要条件,针对此必要条件经常带出"两端点边界值问题",使用"直接定位法"用来寻找高度非线性最优控制问题的数值解。针对诸多不同的限制场景,依序持续缩小隧道半径,每次缩小半径0.1 m,观察记录值函数及完成任务所需时间,以此进行针对性仿真研究,并给出研究结果。
Optimal control and designs least–energy maneuver control laws for a five–linked manipulator were applied in order to carry out designated tasks in a confined space. Lagrange–Euler equation described the relationships between the actuators and system dynamics. Euler–Lagrange formulation indicates how optimization can be achieved when optimum occurs. Direct collocation method was introduced in order to solve this highly nonlinear dynamic optimal control problem. Simulations were done to exploit how the manipulator reacted to the constraint. In this study, the diameter of the cylindrical space was shrunken each time by 0.1 meters. The value of the cost function and final time observed.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2015年第8期1844-1852,共9页
Journal of System Simulation
基金
Expert Pioneer Project of Zhejiang(LJ2013146)
关键词
机器人控制
最优化
直接配置
受限空间
robotic control
optimization
direct collocation
confined workspace