期刊文献+

基于相对运动特征的步态识别方法 被引量:3

Gait Recognition Based-on Relative Motion Features and Kinect
下载PDF
导出
摘要 步态识别是一项很重要的生物识别技术。步态特征分为静态与运动两类。一些工作发现,尽管步态的本质特性在于运动,但运动特征的识别能力较为有限。究竟是运动本身的区分能力有限,还是现有特征未能充分捕获运动特性目前尚不清楚。基于Kinect骨骼模型,相对运动特征被提出,特定关节点之间的距离及其变化被用来刻画步态。相对运动特征的获取无需计算步态周期,鲁棒性好。实验结果显示,相对运动特征的识别精度达84%,与静态特征相当;与已有运动特征相比,精度提高10%以上。 Gait recognition Kinect is a very important biometric technology. Gait feature can be divided into two categories: static and dynamic. Some work found that although the essential characteristics of gait are motion, but the motion feature's recognition capability is limited. However, is the distinguishing ability of the motion itself limited, or existing features doesn't adequately capture the characteristics of motion? Relative distance-based motion features were proposed, and distances between the particular skeleton points and their changes were used to characterize the gait. The relative motion features were extracted without calculating the gait cycle, and with robustness. Experimental results show that the relative motion features' recognition accuracy is up to 84%, which is equivalent to static characteristic.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第10期2299-2304 2309,2309,共7页 Journal of System Simulation
基金 国家863计划主题项目子课题(2012AA012706)
关键词 动态步态特征 相对运动特征 步态识别 生物识别技术 dynamic gait feature relative motion feature gait recognition biometrics
  • 相关文献

参考文献10

  • 1He Xiaofei,Yan Shuicheng,Hu Yuxiao,Niyogi Partha,Zhang Hong-Jiang.Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005
  • 2Jain, Anil K.,Hong, Lin,Pankanti, Sharath,Bolle, Ruud.Identity-authentication system using fingerprints. Proceedings of Tricomm . 1997
  • 3Bouchrika Imed,Goffredo Michaela,Carter John,Nixon Mark.On using gait in forensic biometrics. Journal of Forensic Economics . 2011
  • 4Han, J.,Bhanu, B.Individual recognition using gait energy image. Pattern Analysis and Machine Intelligence, IEEE Transactions on . 2006
  • 5Cunado D,Nixon MS,Carter JN.Using gait as a biometric, via phase-weighted magnitude spectra. Proceedings of International Conference on Audio- and Video-based Biometric Person Authentication . 1997
  • 6Veeraraghavan, Ashok,Roy-Chowdhury, Amit K.,Chellappa, Rama.Matching shape sequences in video with applications in human movement analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005
  • 7Yoo J,Nixon M,Harris C.Extracting Gait Signatures Based on Anatomical Knowledge. Proceedings of BMVA Symposium on Advancing Biometric Technologies . 2002
  • 8Phillips P J,Sarkar S,Robledo I,et al.The gait identification challenge problem:data sets and baseline algorithm. Pattern Recognition,2002,Proceedings16th International Conference on . 2002
  • 9Bashir Khalid,Tao Xiang,Shaogang Gong.Gait recognition using gait entropy image. IET Conference Proceedings . 2009
  • 10Wang Chen,Junping Zhang,Jian Pu,et al.Chrono-gait image:a novel temporal template for gait recognition. Computer Vision–ECCV 2010 . 2010

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部