期刊文献+

联合CRF和可变部位模型的行人检测方法

Combining CRF and Deformable Part Model for Pedestrian Detection
下载PDF
导出
摘要 行人目标检测在许多领域有着广泛的应用,它是计算机视觉研究的焦点之一。基于部位的检测方法在行人检测方面表现出非常出色的性能,在人体姿态变化方面具有很强的适应性,但是对于部位遮挡问题效果不佳。当判别阈值较高的时候,漏检率很高。考虑LSVM方法对遮挡信息挖掘不足,在可变部位模型的基础上,针对部位遮挡问题,建立了条件随机场模型,采用两层分类器。在参数学习中,采用随机梯度下降和置信传播算法优化条件随机场的目标函数。实验结果表明,该文提出的方法在遮挡问题方面表现出较好的效果。 Pedestrian detection has been widely used in many fields. It is one of the focus in computer vision. The part-based detection method in the pedestrian detection shows excellent performance and has a strong adaptability in posture change of human body. But it is not good for Occlusion problem. When the Discriminative threshold is higher, miss rate is very high. Considering the disadvantage of LSVM method for mining hidden information, a two layers classifier was proposed based on the deformable parts model establishing conditional random field model for Occlusion problem. For learning model parameters, the stochastic gradient descent and belief propagation algorithm optimization objective function of the random field conditions were used. The experimental results show that the proposed approach achieves good effect for Occlusion problem.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第10期2310-2315,共6页 Journal of System Simulation
基金 辽宁省教育厅一般科技项目(L2012003)
关键词 行人检测 可变部位模型 条件随机场 隐支持向量机 pedestrian detection deformable part model CRF LSVM
  • 相关文献

参考文献11

  • 1Mark Everingham,Luc Gool,Christopher K. I. Williams,John Winn,Andrew Zisserman.The Pascal Visual Object Classes (VOC) Challenge[J]. International Journal of Computer Vision . 2010 (2)
  • 2Wu, Tianfu,Zhu, Song-Chun.A numerical study of the bottom-up and top-down inference processes in and-or graphs. International Journal of Computer Vision . 2011
  • 3Felzenszwalb, P.F.,Girshick, R.B.,McAllester, D.,Ramanan, D.Object Detection with Discriminatively Trained Part-Based Models. Pattern Analysis and Machine Intelligence, IEEE Transactions on . 2010
  • 4Hossein Tehrani Niknejad,Akihiro Takeuchi,Seiichi Mita.On-Road Multivehicle Tracking Using Deformable Object Model and Particle Filter With Improved Likelihood Estimation. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS . 2012
  • 5W. Ouyang,X. Wang.A discriminative deep model for pedestrian detection with occlusion handling. IEEE Conference on Computer Vision and Pattern Recognition . 2012
  • 6Ott P,Everingham M.Shared parts for deformable partbased models. Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition . 2011
  • 7Xiaogang Wang.Scene-Specific Pedestrian Detection for Static Video Surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2014
  • 8S Andrews,I Tsochantaridis,T Hofmann.Support Vector Machines for Multiple-Instance Learning. Advances in Neural Information Processing Systems . 2003
  • 9Enzweiler M,Eigenstetter A,Schiele B, et al.Multi-cue pedestrian classification with partial occlusion handling. Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition . 2010
  • 10A. QUATTONI,M. COLLINS,T. DARRELL.Conditional random fields for object recognition. NIPS . 2004

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部