期刊文献+

基于曲率的点云自动配准方法 被引量:9

Automatic Registration Method Based on Curvature
下载PDF
导出
摘要 由于三维扫描仪采集范围的制约,单次扫描仅得到单一视角的深度图像,需研究深度图像的配准问题实现三维建模。现有商业软件大多需要人工标定实现深度图像配准,为改进此问题,提出一种基于曲率约束的三维点云自动配准法。采用4PCS方法实现两个三维点云模型的自动初配准,用点到面的ICP法及最小二乘法,计算三维模型的刚性变换矩阵。为消除迭代过程中的误匹配,将顶点曲率作为约束,提高了点云配准的准确性。实验结果表明:根据曲率约束去除错误匹配点对后,配准精度提高。 Due to the acquisition range constriction of three-dimensional, a scanner could only obtain a single perspective of the deep image achieving the 3-D modeling from researching the registration of deep image. Currently, most of the existing commercial software requires manual label to achieve the registration of deep image. In order to improve this problem, an automatic registration method based on the constriction of curvature was proposed. At the beginning of registration, the method 4-Points Congruent Sets for Robust Surface Registration(4PCS) was used to achieve the initial and automatic registration. In the phase of accurate registration, ICP and linear least-square optimization method was used to get 3-D model's Rigid transformation matrix. In order to eliminate the iterative process of mismatch problem, the curvature as a constraint was taken to improve the accuracy of point cloud registration. Experiment indicates that after the removal of false match points according to the constraint of curvature, the registration accuracy of the model is increased and perfect.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第10期2374-2379 2386,2386,共7页 Journal of System Simulation
基金 国家自然科学基金(61202198 61402042) 中央高校基本科研业务费(2013YB70 2013YB72) 国家科技支撑计划(2012BAH33F04)
关键词 ICP 点云配准 曲率 点到面ICP 点到点ICP ICP cloud registration curvature point-to-plane ICP point-to-point ICP
  • 相关文献

参考文献13

  • 1Dror Aiger,Niloy J. Mitra,Daniel Cohen-Or.4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics (TOG) . 2008 (3)
  • 2Helmut Pottmann,Stefan Leopoldseder,Michael Hofer.Registration without ICP[J]. Computer Vision and Image Understanding . 2004 (1)
  • 3Agarwal,Sharir.The Number of Congruent Simplices in a Point Set[J]. Discrete & Computational Geometry . 2002 (2)
  • 4Gérard Blais,Martin D. Levine.Registering Multiview Range Data to Create 3D Computer Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1995
  • 5Kung S Y,Arun K S,Rao D V B.State space and SVD based approximation methods for the harmonic retrieval problem. Journal of the Optical Society of America . 1983
  • 6Martin A. Fischler,Robert C. Bolles.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM . 1981
  • 7Chen Y,Medioni G.Object modeling by registration of multiple range images. Proceedings of the 1991 IEEE International Conference on Robotics and Automation . 1991
  • 8Chen, Chu-Song,Hung, Yi-Ping,Cheng, Jen-Bo.RANSAC-based DARCES: A new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1999
  • 9Arun K S,Huang T S,Blostein S D.Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1987
  • 10Yuncai Liu,Thomas S Huang.Estimation of rigid body motion using straight line correspondences. Computer Vision . 1988

共引文献3

同被引文献40

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部