期刊文献+

基于多尺度系数分解框架的医学图像融合 被引量:3

Title Medical Image Fusion Based on Multi-scale Coefficient Decomposition Framework
下载PDF
导出
摘要 为了获得高分辨率图像细节从而辅助疾病诊断,针对磁共振(MR)和计算机断层扫描(CT)的互补特征,提出了一种基于多尺度系数分解框架的融合MR和CT医学图像的新方法。利用离散小波变换(DWT)和非下采样剪切波变换(NSST)对源图像进行多尺度分解,根据不同的局部活性度量将多尺度分解系数进行两次融合,通过对NSST域的近似系数和DWT域的融合近似系数及融合细节系数进行逆变换重建融合图像。实验结果表明,该方法能够得到更高质量的融合图像并且计算开销不大,可以有助于更好的医疗诊断。 The main purpose of medical image fusion is to obtain a high resolution image with as much details as possible for diagnosis. Magnetic resonance(MR) and computed tomography(CT) medical images has special sophisticated and complementary characteristics which are required for accurate diagnosis of disease. Based on this, a new medical fusion approach for MR and CT images based on multi-scale coefficient decomposition framework was proposed. The proposed approach used a combination of discrete wavelet and non-subsampled shearlet transforms for the initial multi-scale decompositions firstly. The decomposition multi-scale coefficients were fused twice using various local activity measures. The fused image was reconstructed by inverse transform of the approximation coefficients in the NSST domain and inverse wavelet transform of fused approximation and fused detail coefficients. The simulation results show that, compared with the state-of-the-art method, the fusion image with higher quality and less computation overhead which can be helpful for better medical diagnosis is obtained in the proposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第10期2615-2621,共7页 Journal of System Simulation
基金 广东省高等学校学科与专业建设专项资金科技创新项目(2013KJCX0171) 广东省自然科学基金项目(S2013010013307)
关键词 医学图像融合 多尺度分解 磁共振图像 计算机断层扫描图像 活性度量 medical image fusion multi-scale decomposition MR image CT image activity measure
  • 相关文献

参考文献14

  • 1Glenn R. Easley,Demetrio Labate,Vishal M. Patel.Directional Multiscale Processing of Images Using Wavelets with Composite Dilations[J]. Journal of Mathematical Imaging and Vision . 2014 (1)
  • 2Glenn Easley,Demetrio Labate,Wang-Q Lim.Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis . 2007 (1)
  • 3H. Li,B.S. Manjunath,S.K. Mitra.Multisensor Image Fusion Using the Wavelet Transform[J]. Graphical Models and Image Processing . 1995 (3)
  • 4G.K. Matsopoulos,S. Marshall.Application of Morphological Pyramids: Fusion of MR and CT Phantoms[J]. Journal of Visual Communication and Image Representation . 1995 (2)
  • 5Kanghui Guo,Demetrio Labate.Optimally Sparse Multidimensional Representation Using Shearlets. SIAM Journal on Mathematical Analysis . 2007
  • 6K. Kannan,S. Arumuga Perumal,K. Arulmozhi.Performance Comparison of various levels of Fusion of Multi-focused Images using Wavelet Transform. International Journal of Computer Applications . 2010
  • 7Burt PJ,Adelson EH.The laplacian pyramid as a compact image code. IEEE Transactions on Communications . 1983
  • 8Toet, Alexander,van Ruyven, Lodewijk J.,Valeton, J.Mathee.Merging thermal and visual images by a contrast pyramid. Optical Engineering . 1989
  • 9Zhang, Fan,Yoo, Yang Mo,Koh, Liang Mong,Kim, Yongmin.Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduction. IEEE Transactions on Medical Imaging . 2007
  • 10Burt PJ,Kolezynski RJ.Enhanced image capture through fusion. Proceedings of Fourth International Conference on Computer Vision . 1993

共引文献7

同被引文献27

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部