期刊文献+

基于浮动车大数据的电动汽车潜在用户分析(英文) 被引量:1

Potential Users of Battery Electric Vehicle Based on Big Data of Floating Vehicles
下载PDF
导出
摘要 在当前中国大力推动发展新能源汽车的政策背景下,发现最适合使用电动汽车的目标用户具有十分重要的意义。该研究基于北京地区12000辆浮动车历时两个月的海量行驶数据,结合相应的驾驶员信息、汽车属性信息等,交叉探索居民的出行特性,分析适合使用电动汽车的用户群体。数据分析结果表明主要功能为居住的城市区域相对其他类型的功能区更适合推广电动汽车;如果在目的地区域设置充电桩,可使约9.2%的本来不适合使用电动汽车的用户成为电动汽车的潜在用户。 Nowadays, the Chinese government is strongly pushing the adoption of new energy vehicles, so it is of great significance to find the most suitable users of EV(Electric Vehicle). This paper did a data mining work to find out target user group of EV based on two-month traveling data, driver information and vehicle attribute information of 12,000 floating vehicles in Beijing. The results show that residential area is more suitable to push the adoption of EV than other functional areas;adding charging piles in the destination area can turn the 9.2% of drivers who are not suitable for EV due to the maximum mileage into the potential users.
作者 孔源 杜怡曼 吴建平 胡可臻 Kong Yuan;Du Yiman;Wu Jianping;Hu Kezhen(Smart-city research center of Hangzhou Dianzi University,Hangzhou 310018,China;Department of Civil Engineering,Tsinghua University,Beijing 100084,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2019年第3期575-584,共10页 Journal of System Simulation
关键词 电动汽车 浮动车大数据 潜在用户 出行行为 出行距离 electric vehicle big data of floating vehicles potential user travel behavior travel distance
  • 相关文献

参考文献2

二级参考文献43

  • 1程振彪.新能源清洁汽车——中国创建自主品牌汽车的历史性机遇[J].汽车科技,2004(5):1-4. 被引量:4
  • 2肖坚.税收与构建和谐社会的关系[J].山西财政税务专科学校学报,2007,9(1):34-36. 被引量:6
  • 3肖坚.促进节能减排的税收政策思考[J].辽宁税务高等专科学校学报,2007,19(6):28-31. 被引量:6
  • 4Gore A. The digital earth: Understanding our planet in the 21st century[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(5): 528.
  • 5Palmisano S. A smarter planet: The next leadership agenda[R]. New York: IBM, 2008.
  • 6Department for Culture, Media and Sport, Department for Business, Innovation and Skills. Digital Britain final report[R]. London: Office of Public Sector Information, 2009.
  • 7郭慧鹏. 智慧城市:应用日渐丰富多彩[N]. 中国信息化周报, 2013-12-30028.
  • 8Frankel F, Reid R. Big data: Distilling meaning from data[J]. Nature, 2008, 455(7209): 30-30.
  • 9Los W, Wood J. Dealing with data: Upgrading infrastructure[J]. Science, 2011, 331(6024): 1515-1516.
  • 10Ahas R, Aasa A, Silm S, et al. Daily rhythms of suburban commuters’movements in the tallinn metropolitan area: Case study with mobile positioning data[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(1): 45-54.

共引文献178

同被引文献14

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部