期刊文献+

伺服驱动系统无模型自适应控制 被引量:2

Research on Model-free Adaptive Control for Servo Driver System
原文传递
导出
摘要 高速高精的应用场合要求伺服驱动系统需要具备很好的动态响应性能和很强的鲁棒性来应对外界的干扰.但系统参数时变特性、不确定性以及非建模动态等因素导致伺服驱动系统的精确模型无法辨识得到.提出一种基于虚拟参考反馈校正的伺服驱动系统无模型自适应控制方法.该方法实时采集过程输入和输出数据,以当前系统运行状态的最新数据序列更新PI控制器参数,达到自适应控制的目的,保证系统的跟随性能.并且该方法结合稳定性约束条件以确保整定出来的伺服参数位于系统的稳定域内.仿真和实验结果表明,相比传统PI控制,提出的无模型自适应控制方法具有更好的动态响应性能、稳定性和鲁棒性. High precision and high speed applications demand satisfied dynamic performance and strong robustness to against external disturbances for AC driver system. However,it was difficult to establish accurate mathematical models for the controlled system considering of time-varying parameters,uncertainness and unmodeled dynamics. A model-free adaptive control for AC servo driver system,based on enhanced virtual reference feedback control( VRFT),was proposed. The improved adaptive VRFT method collected the current process data at each sampling instant to update the controller parameters so that the good tracking performances were ensured. Stability constraints were incorporated in enhanced adaptive method to guarantee the stability the closed-loop system. Simulation and experimental results indicate that the proposed adaptive method processes better dynamic performances,stability and stronger robustness compared to traditional PI controller.
作者 钟震宇 谢远龙 周广兵 雷欢 王楠 Zhong Zhenyu;Xie Yuanlong;Zhou Guangbing;Lei Huan;Wang Nan(Guangdong Institute of Intelligent Manufacturing,Guangdong Key Laboratory of Modern Control Technology,Guangzhou 510070,China;Guangdong Institute of Intelligent Manufacturing,Guangdong Open Laboratory of Modern Control&Optical,Mechanical and Electronic Technology,Guangzhou 510070,China;School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2019年第1期85-93,共9页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 广东省科技计划资助项目(2013B011302013 2013B091300013 2013B091300011 2014B090920004 2016B090926002) 广东省科学院青年科学研究基金资助项目(qnjj201507)
关键词 虚拟参考反馈校正 无模型自适应控制 参数整定 VRFT model-free adaptive control parameter tuning
  • 相关文献

参考文献4

二级参考文献35

  • 1丁锋,杨家本,徐用懋.Convergence Analysis of Forgetting Gradient Algorithm by Using Martingale Hyperconvergence Theorem[J].Tsinghua Science and Technology,2000,5(2):187-192. 被引量:3
  • 2Bu X H,Hou Z S. The Robust Stability of Model Free Adaptive Control with Data Dropouts [ C ]. 2010 8th IEEE International Conference on Control and Automa- tion. Xiamen, China: ICCA ,2010 : 1606 - 1611.
  • 3Hou Z S, Wang Z. From model-based control to data- driven control: Survey, classifi-cation and perspective[J]. Information Sciences, 2013, 235(19): 3-35.
  • 4Hou Z S, Huang W H. The model-free learning adaptive control of a class of SISO nonlinear systems[C]. Proc of American Control Conf. Albuquerque: IEEE, 1997: 343- 344.
  • 5Hou Z S, Jin S T. A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Trans on Control Systems Technology, 2011, 19(6): 1549-1558.
  • 6Hou Z S, Jin S T. Data driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems[J]. IEEE Trans on Neural Networks, 2011, 22(11): 2173-2188.
  • 7Hou Z S, Jin S T. Model free adaptive control-theory and applications[M]. Boca Raton: CRC Press, 2013: 45-118.
  • 8Campi M C, Lecchini A, Savaresi S M. Virtual reference feedback tuning: A direct method for the design of feedback controllers[J]. Automatica, 2002, 38(8): 1337- 1346.
  • 9Campi M C, Lecchini A, Savaresi M. An application of the virtual reference feedback tuning method to a benchmark problem[J]. European J of Control, 2003, 9(1): 66-76.
  • 10Guardabassi G O, Savaresi S M. Virtual reference direct design method: An off-line approach to data-based control system design[J]. IEEE Trans on Automatic Control, 2000, 45(5): 954-959.

共引文献19

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部