期刊文献+

船舶组合导航自适应迭代粒子滤波方法及应用 被引量:7

Adaptive iterative particle filter and its application for ship integrated navigation
下载PDF
导出
摘要 针对多传感器观测信息较多、粒子采样效率较低的问题,提出了一种自适应迭代粒子滤波(adaptive iterated particle filter,AIPF)算法并应用于船舶全球定位系统/惯性导航系统组合导航系统。首先通过粒子滤波自身迭代进行其重要性密度函数的更新。其次,采用自适应退火参数的模拟退火算法,使当前量测量能够快速进入到采样过程,进而大大提高了采样效率。最后,进行了仿真对比计算以及实船试验,结果表明,AIPF算法不仅可以提供精度较高的导航精度,而且增强了滤波性能。 In multi-sensor integrated navigation,extensive observation information and low sampling efficiency will lead to poor navigation performance.An adaptive iterated particle filter is presented and applied in global positioning system/inertial navigation system integrated navigation.Firstly,importance density function is updated iteratively by the particle filter itself.Secondly,by using a simulated annealing algorithm with an adaptive annealing parameter,the current measurement can be quickly incorporated into the sampling process,resulting in greatly improved sampling efficiency.Finally,the performance of the proposed method is examined on the sea trail and the simulation experiment,respectively.The results show that the method can provide better navigation accuracy and improve performance of the filter.
作者 张闯 郭晨 张大恒 ZHANG Chuang;GUO Chen;ZHANG Daheng(Navigation College,Dalian Maritime University,Dalian 116026,China;Institute of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第4期884-889,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(51579024 51879027) 辽宁省自然科学基金(20170520243) 中央高校基本科研业务费(3132018154)资助课题
关键词 粒子滤波 组合导航 多传感器 自适应 particle filter integrated navigation multi-sensor adaptive
  • 相关文献

参考文献5

二级参考文献49

  • 1严恭敏,严卫生,徐德民.基于欧拉平台误差角的SINS非线性误差模型研究[J].西北工业大学学报,2009,27(4):511-516. 被引量:23
  • 2熊伟,何友,张晶炜.多传感器顺序粒子滤波算法[J].电子学报,2005,33(6):1116-1119. 被引量:11
  • 3施闻明,杨晓东.天文定位中选星系统的建模与仿真[J].系统仿真学报,2007,19(7):1428-1429. 被引量:2
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F 1993; 140(2): 107-113.
  • 5Steven M K. Fundamentals of statistical signal processing. Luo P F, Zhang W M, Liu Z, et al. translated. Beijing: Publishing House of Electronics Industry, 2003.
  • 6Nordlund P J. Recursive state estimation of nonlinear systems with applications to integrated navigation. Linkoping: Linkoping University, LiTH-ISY-R-2321, 2000.
  • 7Doucet A, Freitas N, Gordon N J. Sequential Monte Carlo in practice. New York: Springer Press, 2001.
  • 8Pitt M K, Shephard N. Filtering via simulation auxiliary particle filters. JASA 1999; 94(446): 590-599.
  • 9Bergman N. Recursive Bayesian estimation navigation and tracking applications. PhD thesis, Linkoping University, 1999.
  • 10Klaas M, Freitas N, Doucet A. Toward practical N^2 Monte Carlo: the marginal particle filter. Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI-05). Arlington, Virginia: AUAI Press, 2005; 308-315.

共引文献38

同被引文献50

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部