摘要
针对多传感器观测信息较多、粒子采样效率较低的问题,提出了一种自适应迭代粒子滤波(adaptive iterated particle filter,AIPF)算法并应用于船舶全球定位系统/惯性导航系统组合导航系统。首先通过粒子滤波自身迭代进行其重要性密度函数的更新。其次,采用自适应退火参数的模拟退火算法,使当前量测量能够快速进入到采样过程,进而大大提高了采样效率。最后,进行了仿真对比计算以及实船试验,结果表明,AIPF算法不仅可以提供精度较高的导航精度,而且增强了滤波性能。
In multi-sensor integrated navigation,extensive observation information and low sampling efficiency will lead to poor navigation performance.An adaptive iterated particle filter is presented and applied in global positioning system/inertial navigation system integrated navigation.Firstly,importance density function is updated iteratively by the particle filter itself.Secondly,by using a simulated annealing algorithm with an adaptive annealing parameter,the current measurement can be quickly incorporated into the sampling process,resulting in greatly improved sampling efficiency.Finally,the performance of the proposed method is examined on the sea trail and the simulation experiment,respectively.The results show that the method can provide better navigation accuracy and improve performance of the filter.
作者
张闯
郭晨
张大恒
ZHANG Chuang;GUO Chen;ZHANG Daheng(Navigation College,Dalian Maritime University,Dalian 116026,China;Institute of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2019年第4期884-889,共6页
Systems Engineering and Electronics
基金
国家自然科学基金(51579024
51879027)
辽宁省自然科学基金(20170520243)
中央高校基本科研业务费(3132018154)资助课题
关键词
粒子滤波
组合导航
多传感器
自适应
particle filter
integrated navigation
multi-sensor
adaptive