期刊文献+

基于CS的Hopfield神经网络数字识别应用 被引量:2

Application of Digit Recognition Based on Hopfield Neural Network with CS
下载PDF
导出
摘要 介绍了布谷鸟搜索(cuckoo search,CS)和Hopfield神经网络的基本原理,研究了基于Hopfield神经网络的数字识别应用.针对Hopfield网络权值在数字识别时易陷入局部最优,提出将CS引入Hopfield神经网络的解决方法.利用CS对复杂、多峰、非线性极不可微函数的全局搜索能力,使Hopfield网络在较高噪信比的情况下仍保持较高的联想成功率,并进行了仿真.仿真结果表明,该方法识别数字的效果更佳. The basic theories of cuckoo search(CS) and Hopfield Neural Network(HNN) are introduced, and the application of Hopfield Network in the digit recognition is researched. Aiming at the problem that Hopfield Neural Network can easily fall into local minimum, a new method that Hopfield network combines CS is presented. The method uses the global search capability of CS for complex, multimodal, nonlinear and non-differentiable functions to make Hopfield network keep a higher success rate even if noise-to-Signal ratio is high, and a simulation was carried out. Experiment results show that this method has a better performance.
出处 《计算机系统应用》 2015年第7期132-136,共5页 Computer Systems & Applications
关键词 CS HOPFIELD神经网络 数字识别 CS Hopfield neural network digit recognition
  • 相关文献

参考文献2

  • 1Xin-She Yang,Suash Deb.Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation . 2010
  • 2Yang XS,Deb S.Cuckoo search via Levy flights. Proc.of world congress on nature&biologically; inspired computing .

共引文献1

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部