期刊文献+

基于SVM-BiLSTM-CRF模型的财产纠纷命名实体识别方法 被引量:13

Named Entity Recognition Method of Judgment Documents with SVM-BiLSTM-CRF
下载PDF
导出
摘要 裁判文书中的命名实体识别是自动化审判的关键一步,如何能够有效的分辨出案件的关键命名实体是本文的研究重点.因此本文针对财产纠纷审判案件,提出了一种基于SVM-BiLSTM-CRF的神经网络模型.首先利用SVM筛选出包含关键命名实体的句子,然后将正确包含此类实体的句子转化为字符级向量作为输入,构建适合财产纠纷裁判文书命名实体识别的BiLSTM-CRF深层神经网络模型.通过构建训练数据进行验证和对比,该模型比其他相关模型表现出更高的召回率和准确率. The recognition of the named entity in the judgment documents is the key step in the automatic trial.How to effectively distinguish the key named entity of the case is the key point in this study.Therefore,this study proposes a neural network model based on SVM-BiLSTM-CRF for property dispute of trial cases.First,the sentences containing the key named entities are selected by SVM,and then the sentences are converted into the character level vectors as input,and the BiLSTM-CRF deep neural network model suitable for the identification of the property dispute referee’s named entity is constructed.By constructing training data for verification and comparison,the model shows higher recall and accuracy than other related models.
作者 周晓磊 赵薛蛟 刘堂亮 宗子潇 王其乐 里剑桥 ZHOU Xiao-Lei;ZHAO Xue-Jiao;LIU Tang-Liang;ZONG Zi-Xiao;WANG Qi-Le;LI Jian-Qiao(University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;Shenyang Railway Transportation Branch of Liaoning People’s Procuratorate, Shenyang 110001, China;Northeastern University, Shenyang 110000, China;Shenyang Thirty-first Middle School, Shenyang 110021, China;Dalian University of Technology, Dalian 116621, China)
出处 《计算机系统应用》 2019年第1期245-250,共6页 Computer Systems & Applications
关键词 命名实体识别 SVM BiLSTM CRF named entity SVM BiLSTM CRF
  • 相关文献

同被引文献81

引证文献13

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部