期刊文献+

基于增强二部图网络结构的推荐算法 被引量:1

Recommendation Algorithm Based on Enhanced Bipartite Graph Network
下载PDF
导出
摘要 协同过滤推荐算法的数据稀疏性与冷启动问题影响和制约了推荐的质量.基于用户-项目二部图的信任计算可以有效的利用用户间的潜在联系提高推荐性能.提出一种融合基于二部图的增强繁殖信任与JMSD相关系数的推荐方法,包括对改进的加权用户-项目自适应繁殖信任度的计算,在此基础上融合用户偏好的增强信任度机制,以及线性加权JMSD相关系数,两组数据集下的对比实验表明,与三种基准算法对比改进的算法模型具有更低的平均绝对误差(MAE),更高的召回率(Recall),提高了推荐质量. The data sparsity and cold start problem of collaborative filtering recommendation algorithm affects and constrains the quality of recommendation.Trust calculation based on user-project bipartite graph can effectively utilize the hidden connection between users.The algorithm model proposed in this study includes the calculation of improved user-project adaptive trust,incorporates an improved enhanced trust mechanism based on user preferences,linear weighted JMSD correlation coefficient.Experiments under the two sets of data set show that the improved algorithm model has a lower Mean Absolute Error(MAE)and higher recall rate(Recall)than the three benchmark algorithms,both models have their own focus,which improves the quality of recommendations.
作者 张岐山 文闯 ZHANG Qi-Shan;WEN Chuang(School of Economics and Management,Fuzhou University,Fuzhou 350108,China)
出处 《计算机系统应用》 2019年第4期151-156,共6页 Computer Systems & Applications
基金 国家自然科学基金(61300104) 福建省自然科学基金(2018J01791)~~
关键词 协同过滤 稀疏性 冷启动 信任 二部图网络 用户偏好 collaborative filtering sparseness cold start trust bipartite networks user preferences
  • 相关文献

参考文献6

二级参考文献158

  • 1余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献494

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部