期刊文献+

第三类Painlevé方程解的渐近性态分析 被引量:3

Asymtotics analysis of the general third Painlevé equation
下载PDF
导出
摘要 通过数值方法,结合理论分析,给出了第三类Painlev啨方程y″=y′2y-y′x+1x(αy2+β)+γy3+δy.振荡渐近解的表达形式:当δ>0,γ<0时,y=A+B|x|-1/2cos(a|x|+bln|x|+c)+O(|x|-1,x→±∞;当δ=0,γ<0时,y=|x|-1/3[A+B|x|-1/3cos(a|x|2/3+bln|x|+c)]+O(x-1),x→±∞;当δ>0,γ=0时,y=|x|1/3[A+B|x|-1/3cos(a|x|2/3+bln|x|+c)]+O(|x|-1/3),x→±∞. The expression of the asymptotical vibrational solution of the third Painlevé equation y″=y′~2y-y′x+1x(αy^2+β)+γy^3+δy is given as follows: if δ>0,γ<0,y=A+B |x|^(-1/2)cos(a|x|+bln|x|+c)+O(|x|^(-1)),x→±∞;if δ=0,γ<0,y=|x|^(-1/3)\[A+B|x|^(-1/3)cos(a|x|^(2/3)+bln|x|+c)\]+O(x^(-1)),x→±∞;if δ>0,γ=0,y=|x|^(1/3)\[A+B|x|^(-1/3)cos(a|x|^(2/3)+bln|x|+c)\]+O(|x|^(-1/3)),x→±∞. 
出处 《山东理工大学学报(自然科学版)》 CAS 2004年第1期54-57,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 第三类Painleve方程 振荡解 渐近性态 最小二乘法 the general third Painlevé equation vibrational solution asymptotics
  • 相关文献

参考文献8

  • 1Gamier R. Contributionia Pétude dés solutions de l'equation (V)de Painlevé[J]. J.Math. Pures. Appl, 1967,46:353-412.
  • 2Kitaev A V. The method of isomondromy deformations and the asymptotics of solutions of the "completele" third Painlevé equation[J]. Math. USSR Sbornik, 1987,62:421-444.
  • 3Shimomura S. On solutions of the fifth Pairdevé equation on the positive real axis I[J]. Funkcialaj Ekvacioj, 1985,28:341-370.
  • 4Shimomura S. On solutions of the fifth Pairdevé equation on the positive real axis Ⅱ[J]. Funkcialaj Ekvacioj, 1987,28:203-224.
  • 5LU Youmin. Asymtotics of the Nonnegative Solutions of the General Fifth Painlevé Equation[J]. Applicable Analysis, 1999,72(3-4) :501- 517.
  • 6Mazzocco M. Picard and Chazy Solutions to Pairdevé VI equation[J]. Math. AG/9901054vl. 1999, (1) : 1-35.
  • 7Mazzocco M. Rational Solutions to Painlevé VI equation[ J ]. nlin. Si/0007036, 2000,24:1-13.
  • 8Ovldiu Costin, Rodica D. Costin Asymptotis Properties of a Family of Solutions of the Painlevé Equation[J]. IMRN, 2002,No. x.

同被引文献19

  • 1Garnier R. Contributionia Pétude dés solutions de l' equation(V)de Painlevé [J]. J. MathR. Pures. Appl, 1967,46:353-412.
  • 2Kitaev A V. The method of isomondromy deformations and the asymptotics of solutions of the" completele" third Painlevé equation [J].Math. USSR Sbornik, 1987,62:421-444.
  • 3Shimomura S. On solutions of the fifth Painlevé eqution on the positive real axis Ⅰ [J]. Funkcialaj Ekvacioj,1985,28:341-370.
  • 4Shimomura S. On solutions of the fifth Painlevé eqution on the positive real axis Ⅱ [J]. Funkcialaj Ekvacioj, 1987,28:203-224.
  • 5Lu Y oumin. Asymtotics of the Nonnegative Solutions of then General Fifth Painlevé Equation [ J ]. Applicable Analysis. 1999,72 ( 3-4 ) :501-517.
  • 6Mazzocco M. Picard and Chazy Solutions to PainlevéⅥ equation [J]. Math. AG/9901054 1999,13:1-35.
  • 7Mazzocco M. Rational Solutions to PainlevéⅥ equation, nlin. Si/0007036 2000,24:1-13.
  • 8Ovldiu Costin, Rodica D Costin. Asymptotis Properties of a Family of Solutions of the Painlevé Equation [J]. IMRN 2002. No. x.
  • 9Lu Youmin. On the Asymptotic Representation of the Solutions to the Fourth General Painlevé Equation [ J ]. IJMMS 2003,2003,13: 845-851.
  • 10Shimomura S. On solutions of the fifth Painleve eqution on the positive real axis Ⅱ [J], Funkcialaj Ekvacioj, 1987,28: 203-224.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部