摘要
借助于路程、速度等质点运动学概念,给出多元函数极值的Lagrange乘数法的工作原理,验证了一元函数与二元函数无约束极值判别法的正确性;基于质点运动轨迹与速度的关系,导出可微函数曲线的切线和曲面的切平面公式.
In this paper,with the particle path and velocity,the principle of Lagrange multiplier for the extreme value of multi-variable functions is analyzed,and the discriminants for the extreme value of unconstrained functions are verified.Base on the relationship between trajectory and velocity,the tangent line of curve and the tangent plane of surface are derived.
出处
《高等数学研究》
2014年第3期4-7,共4页
Studies in College Mathematics
基金
中央高校基本科研业务费专项资金资助项目(S11JB00400)
关键词
速度
轨迹
极值
切线
velocity,trajectory,extreme value,tangent