期刊文献+

位势符号可变的非周期超二次Hamilton系统的同宿轨道 被引量:2

HOMOCLINIC ORBITS OF SUPERQUADRATIC HAMILTONIAN SYSTEMS NON-PERIODICITY WITH CHANGABLE POTENTIAL SIGN
下载PDF
导出
摘要 研究了二阶Hamilton系统u··(t) -L(t)u(t) +V′u(t,u) =0 ,当位势函数V(t,u)可改变符号 ,非周期 ,且满足超二次条件 βV(t,u) -V′(t,u)≤α(L(t)u ,u) ) ,t∈R ,u∈Rm ,β>2 ,0≤α<β2 - 1时 ,用变分方法证明了该系统存在非平凡的同宿轨道 . The existence of nontrivial homoclinic orbits of Hamiltonian systems u··(t)-L(t)u(t)+V′ u(t,u)=0, -∞<t<+∞ is proved, where V(t,u) is a non-periodic, superquadratic potential function with changable sign, namely βV(t,u)-V′(t,u)≤α(L(t)u,u)),t∈R,u∈R\+m,β>2,0≤α<β2-1. Via the variational method.
作者 李成岳
出处 《曲阜师范大学学报(自然科学版)》 CAS 2004年第1期21-26,共6页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金资助项目 ( 10 3 710 0 7)
关键词 位势符号 HAMILTON系统 山路引理 同宿轨道 Hamiltonian systems Moutain Pass Lemma homoclinic orbits
  • 相关文献

参考文献2

二级参考文献7

  • 1[6]Omana W,Willem M.Homoclinic orbits for a class of Hamiltonian systems[J].Differential and Integral Equations,1992,5(5):1115-1120.
  • 2[7]Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations[A].CBMS Regional Conf.Ser.in Math.,No.65[C],1986.
  • 3[1]Rabinowitz P H.Homoclinic orbits for a class of Hamiltonian systems[J].Proc.Roy.Soc.Edinburgh Sect.A,1990,114:33-38.
  • 4[2]Coti Zelati,Ekeland,Ser.A variational approach to homoclinic orbits in Hamiltonian systems[J].Math.Ann.,1990,288:133-160.
  • 5[3]Rabinowitz P H,Tanaka K.Some results on connecting orbits for a class of Hamiltonian systems[J].Math Z.,1991,206:473-499.
  • 6[4]Korman P,Lazer A.Homoclinic orbits for a class of symmetric Hamiltonian systems,Electronic Journal of Differential Equations[J].1994(1):1-10.
  • 7[5]Korman P,Ouyang T.Exact multiplicity results for two classes of boundary value problems[J].Differential and Integral Equations,1993,5(5):1507-1517.

共引文献3

同被引文献19

  • 1李成岳,路月峰,钟仕增,张卫杰.一类非对称二阶系统正值同宿轨道的存在性[J].曲阜师范大学学报(自然科学版),2005,31(4):6-10. 被引量:1
  • 2[1]RABINOWITZ P H.Minimal methods in critical point theory with applications to differential equations[C]//CBMS Regional Conf Series in Math.AMS,1986,65.
  • 3[2]CALDIROLI P,MONTECCHIARI P.Homoclinic orbits for second order Hamiltonian systems with potential changing sign[J].Commu Appl Nonliner Anal,1994,1 (2):97 ~ 129.
  • 4[3]OMANA W,WILLEM M.Homoclinic orbits for a class of Hamiltonian systems[J].Differ.Integral Equ,1992,5 (5):1115~1120.
  • 5[4]GUIHUA F.The existence of homoclinic solutions to a class of Hamiltonian systems with potential changing sign[J].Chin Ann Math(Ser B),1996,17(4):403~410.
  • 6[6]PHILIP KORMAN,ALAN C LAZER.Homoclinic orbits for a class of Symmetric Hamiltonian systems[J].Electronic Journal of Differential Equations,1994,01:1~10.
  • 7Tao Z L,Tang C L.Periodic solutions of second-order Hamiltonian systems[J].J Math Anal Appl,2004,293(2):435-445.
  • 8Ma S W,Zhang Y X.Existence of infinitely many periodic solutions for ordinary p-Laplacian systems[J].J Math Anal Appl,2009,351(1):469-479.
  • 9Faraci F,Livrea R.Infinitely many periodic solutions for a second-order nonautonomous system[J].Nonlinear Anal:TMA,2003,54(1):417-429.
  • 10Zhang P,Tang C L.Infinitely many periodic solutions for nonautonomous sublinear second-order Hamiltonian systems[J].Abstract and Applied Analysis,2010,(7):1-10.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部