期刊文献+

重正化群方程的一种有效数值解法

An effective numerical solution of renormalization group equations
原文传递
导出
摘要 介绍了重正化群方程的一种有效的数值解法,并与多项式展开的传统解法作了比较. An effective numerical solution of renormalization group equations is introduced,and compared with the traditional solution of polynomial expansion.
作者 张艳阳
出处 《云南大学学报(自然科学版)》 CAS CSCD 2004年第1期47-50,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 973"计划非线性科学项目部分资助(G2000077308).
关键词 重正化群方程 数值解 多项式展开 标度普适性 非线性动力学 renormalization group equation scaling universality numerical solution
  • 相关文献

参考文献1

二级参考文献12

  • 1FEIGENBAUM M J. Quantitative universality for a class of nonlinear transformtions[J]. J Stat Phys, 1978, 19 ( 1 ):25.
  • 2FEIGENBAUM M J. The universal metric properties of nonlinear transformations [ J ]. J Stat Phys, 1979, 21(6): 669-706.
  • 3FEIGENBAUM M J. Universal behavior in nonlinear systems[ J ]. Physica, 1983, 7 (1): 16-39.
  • 4ZENG Wan-zhen, HAO Bai-lin, WANG Guang-rui, et al. Scaling property of period-n-tupling sequences in one-dimensional mappings [ J ]. Commun Theor. Phys,1984, 3(3) :283-295.
  • 5HAO Bai-lin. Elementary symbolic dynamics and chaos in dissipative systems[ M]. Singapore: World Scientific,1989.
  • 6DERRIDA B, GERVOIS A, POMEAU Y. Iteration of endomorphisms on the real axis and representation of numbers[J]. Ann Inst Henri Poincaré, Sect. A, 1978, 29(3): 305-356.
  • 7PENG Shou-li, ZHANG Xu-sheng, CAO Ke-Fei. Dual star products and metric universality in symbolic dynamics of three letters[J]. Phys Lett A, 1998, 246(1):87-96.
  • 8CAO Ke-fei, PENG Shou-li. Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps[J]. Phys Rev E, 1999, 60(3):2 745-2760.
  • 9WEELE VAN DER J P, CAPEL H W, KLUIVING R.Period doubling in maps with a maximum of order z[J].Physica, 1987, 145(3): 425-460.
  • 10VEITCH D. Renoxmalization of binxdal maps[J]. Physica D, 1994, 71(3) :269-284.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部