期刊文献+

认知无线电中基于LSTM网络的MAC协议识别 被引量:5

MAC Protocol Recognition based on LSTM Network in Cognitive Radio
下载PDF
导出
摘要 认知无线电是缓解频谱资源短缺的关键技术之一。媒体访问控制(Medium Access Control,MAC)协议识别对于扩展认知无线电的应用有着重要的实用价值。传统的MAC协议识别技术准确率不高,同时依赖手动特征提取。为了克服这些问题,本文引入深度学习思想,提出了基于长短期记忆(Long Short-term Memory,LSTM)网络的MAC协议识别方法。该方法充分考虑接收信号的时域相关性,利用LSTM网络构造分类器,实现了四种常见MAC协议的识别。实验结果表明,与传统的机器学习算法相比,本文方法能够在较少人工干预的条件下达到更高的识别精度,具有很好的应用前景。 Cognitive radio is one of the key technologies to alleviate shortage of spectrum resource.Medium Access Control(MAC)protocol recognition is of great practical value to extend the applications of cognitive radio.Traditional MAC recognition techniques suffer from low recognition accuracy and require manual feature extraction.In order to conquer these problems,this paper introduces the idea of deep learning and proposes a MAC protocol recognition method based on Long Short-term Memory(LSTM)network.The proposed method fully considers the temporal correlation of received signal,constructs a classifier using LSTM network,and realizes the recognition of four common MAC protocols.Experimental results show that,compared with traditional machine learning based algorithm,our method achieves higher recognition accuracy with less manual work and has great application potential.
作者 李焕焕 彭盛亮 陈铮 秦雄飞 Li Huanhuan;Peng Shengliang;Chen Zheng;Qin Xiongfei(Xiamen Key Laboratory of Mobile Multimedia Communications,Huaqiao University,Xiamen,Fujian 361021,China)
出处 《信号处理》 CSCD 北大核心 2019年第5期837-842,共6页 Journal of Signal Processing
基金 国家自然科学基金(61861019,61362018) 湖南省自然科学基金(2019JJ50483) 江苏省博士后基金(1402041B) 华侨大学引进高层次人才启动基金(13BS101) 华侨大学研究生科研创新能力培养计划资助项目(17013082029)
关键词 MAC协议识别 深度学习 长短期记忆网络 认知无线电 MAC protocol recognition deep learning long short-term memory network cognitive radio
  • 相关文献

参考文献3

二级参考文献9

  • 1李允公,姚兆,刘杰,刘劲涛.基于瞬时频率的窗宽递增寻优的短时傅里叶变换[J].东北大学学报(自然科学版),2007,28(12):1737-1740. 被引量:12
  • 2Mitola III J, Maguire Jr G Q. Cognitive radio:making software radios more personal [ J ]. Personal Communications, IEEE, 1999,6(4) :13 - 18.
  • 3Enda K, Kohno R. A Study on the Estimation of Wave Source's Allocation and the Elimination of Interference Wave in Environmental Monitoring of Cognitive Radio[J]. Ieice Technical Report,2005,105 : 83 - 87.
  • 4Yang Z, Yao Y, Chen S, et al. MAC protocol classification in a cognitive radio network [ C ]//Wireless and Optical Communications Conference ( WOCC ) ,2010 19th Annual. Shanghai : IEEE, 2010 : 1 - 5.
  • 5Hu S, Yao Y, Yang Z. MAC protocol identification using support vector machines for cognitive radio networks [ J ]. Wireless Communications, IEEE ,2014,21 ( 1 ) :52 - 60.
  • 6Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique [ J ]. Journal of Artificial Intelligence Research ,2002,16 ( 1 ) :321 - 357.
  • 7李晓欧.基于独立分量分析和共同空间模式的脑电特征提取方法[J].生物医学工程学杂志,2010,27(6):1370-1374. 被引量:12
  • 8孟霏,张旭秀.运动想象脑电信号的特征提取和分类进展[J].北京生物医学工程,2013,32(2):209-214. 被引量:4
  • 9焦李成,杨淑媛,刘芳,王士刚,冯志玺.神经网络七十年:回顾与展望[J].计算机学报,2016,39(8):1697-1716. 被引量:369

共引文献13

同被引文献36

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部