摘要
认知无线电是缓解频谱资源短缺的关键技术之一。媒体访问控制(Medium Access Control,MAC)协议识别对于扩展认知无线电的应用有着重要的实用价值。传统的MAC协议识别技术准确率不高,同时依赖手动特征提取。为了克服这些问题,本文引入深度学习思想,提出了基于长短期记忆(Long Short-term Memory,LSTM)网络的MAC协议识别方法。该方法充分考虑接收信号的时域相关性,利用LSTM网络构造分类器,实现了四种常见MAC协议的识别。实验结果表明,与传统的机器学习算法相比,本文方法能够在较少人工干预的条件下达到更高的识别精度,具有很好的应用前景。
Cognitive radio is one of the key technologies to alleviate shortage of spectrum resource.Medium Access Control(MAC)protocol recognition is of great practical value to extend the applications of cognitive radio.Traditional MAC recognition techniques suffer from low recognition accuracy and require manual feature extraction.In order to conquer these problems,this paper introduces the idea of deep learning and proposes a MAC protocol recognition method based on Long Short-term Memory(LSTM)network.The proposed method fully considers the temporal correlation of received signal,constructs a classifier using LSTM network,and realizes the recognition of four common MAC protocols.Experimental results show that,compared with traditional machine learning based algorithm,our method achieves higher recognition accuracy with less manual work and has great application potential.
作者
李焕焕
彭盛亮
陈铮
秦雄飞
Li Huanhuan;Peng Shengliang;Chen Zheng;Qin Xiongfei(Xiamen Key Laboratory of Mobile Multimedia Communications,Huaqiao University,Xiamen,Fujian 361021,China)
出处
《信号处理》
CSCD
北大核心
2019年第5期837-842,共6页
Journal of Signal Processing
基金
国家自然科学基金(61861019,61362018)
湖南省自然科学基金(2019JJ50483)
江苏省博士后基金(1402041B)
华侨大学引进高层次人才启动基金(13BS101)
华侨大学研究生科研创新能力培养计划资助项目(17013082029)
关键词
MAC协议识别
深度学习
长短期记忆网络
认知无线电
MAC protocol recognition
deep learning
long short-term memory network
cognitive radio