期刊文献+

基于大数据的旅游批发商游客信息系统研究

Research on Tourist Information System of Tourism Wholesalers Based on Big Data
下载PDF
导出
摘要 旅游业是我国经济进入新常态以后促进消费、拉动经济增长的一个重要行业。旅游企业不能满足于现状,而是需要对市场进行"深耕细作"。笔者对旅游业进行广泛调研,研究发现目前旅游业的信息化程度极低,处于互联网"石器时代"。目前旅游业的信息发布、收集、统计等都靠人工手工完成,导致资源浪费和效率低下。将智能化信息管理、信息化的数据采集、大数据分析和旅游业相结合,能改变目前旅游行业低信息化的状态,为企业提供智能化的信息服务管理。有效提高旅游企业的智能水平,在实现利润的最大化的同时,更好地管理客户信息等。 Tourism is an important industry that promotes consumption and stimulates economic growth after China’s economy enters a new normal.Tourism companies cannot be satisfied with the status quo,but need to'deeply cultivate'the market.The author conducted extensive research on tourism,and found that the current informatization of tourism is extremely low,and it is in the'Stone Age'of the Internet.At present,the information release,collection,and statistics of the tourism industry are all done manually,resulting in waste of resources and inefficiency.Combining intelligent information management,informatized data collection,big data analysis and tourism can change the current state of low informationization in the tourism industry and provide intelligent information service management for enterprises.Effectively improve the intelligence level of tourism enterprises,and achieve better management of customer information while maximizing profits.
作者 谢治军 Xie Zhijun(Sichuan Technology and Business University,Chengdu Sichuan 611745,China)
机构地区 四川工商学院
出处 《信息与电脑》 2019年第8期121-123,共3页 Information & Computer
基金 四川省哲学社会科学重点研究基地 四川旅游发展研究中心2018年度课题"基于大数据的旅游批发商游客信息系统研究"(项目编号:LYC18-30)
关键词 大数据 旅游批发商 游客信息 big data tourism wholesalers tourist information
  • 相关文献

参考文献3

二级参考文献25

  • 1ZAGARIA M,BORTHAKUR D,SARMA J S,et al.Job Scheduling for Multi-User Map Reduce Clusters[R].USA:EECS Department,University of California,2009.
  • 2Hadoop.[EB/OL].[2013-08-24].http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html#Overview.
  • 3ZAHARIA M,KONWINSKI A,JOSEPH A D,et al.Improving Map Reduce Performance in Heterogeneous Environments[C]//8th USENIX Symposium on Operation Systems Design and Implementation(OSDI).USA:ASM,2008:7.
  • 4CHAIKEN R,JENKINS B,LARSON P,et al.SCOPE:Easy and Efficient Parallel Processing of Massive Data Sets[J].Proceedings of the VLDB Endowment,2008,1(2):1265-1276.
  • 5ZAHARIA M,CHOWDHURY M,DAS T,et al.Resilient Distributed Datasets:A FaultTolerant Abstraction for in-Memory Cluster Computing[C]//Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation.USA:USENIX Association,2012:2-2.
  • 6XIN R S,ROSEN J,ZAHARIA M,et al.Shark:SQL and Rich Analytics at Scale[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of data.USA:ACM Press,2013:13-24.
  • 7GONZALEZ J E,LOW Y,GU H,et al.Power Graph:Distributed Graph-Parallel Computation on Natural Graphs[C]//Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation(OSDI).USA:USENIX Association,2012:17-30.
  • 8KREPS J,NARKHEDE N,RAO J.Kafka:A Distributed Messaging System for Log Processing[C]//Proceedings of the 6th International Workshop on Networking Meets Databases(Net DB).USA:ACM Press,2011.
  • 9PENG D,DABEK F.Large-Scale Incremental Processing Using Distributed Transactions and Notifications[C]//Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation(OSDI).USA:USENIX Association,2010:1-15.
  • 10GUNDA P K,RAVINDRANATH L,THEKKATH C A,et al.Nectar:Automatic Management of Data and Computation in Datacenters[C]//Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation(OSDI).USA:USENIX Association,2010:75-88.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部