摘要
传统网络恶意攻击信息识别技术的检测率较低,为此提出基于大数据的网络恶意攻击信息识别技术,研究根据源节点的特征,建立网络恶意攻击机制,通过网络恶意攻击黑名单中统计的恶意范畴,对网络恶意攻击进行信息识别。由此,完成基于大数据的网络恶意攻击信息识别技术的研究。实验中,对比两种信息识别技术的检测率。实验结果表明,基于大数据的网络恶意攻击信息识别技术的检测率更高。
Traditional network malicious attack information recognition technology has a low detection rate,so this paper proposes a network malicious attack information recognition technology based on big data.According to the characteristics of the source node,a network malicious attack mechanism is established.The malicious attack information is identified through the malicious category in the network malicious attack blacklist.Thus,the research of network malicious attack information recognition technology based on large data is completed.In the experiment,the detection rate of two kinds of information recognition technology is compared.The experimental results show that the detection rate of network malicious attack information recognition technology based on large data is higher.
作者
詹柳春
黄长江
林美
Zhan Liuchun;Huang Changjiang;Lin Mei(Huali College Guangdong University of Technology,Zhanjiang Guangdong511325,China;Guangzhou University SongtianCollege,Guangzhou Guangdong511370,China;Guangdong Nanfang Institute of Technology,Zhanjiang Guangdong529000,China)
出处
《信息与电脑》
2019年第16期182-183,共2页
Information & Computer
关键词
网络恶意攻击
大数据
信息识别
黑名单
network malicious attack
big data
information identification
blacklist