期刊文献+

基于深度学习的工业零件缺陷检测算法研究 被引量:4

Research on Defect Detection Algorithms for Industrial Parts Based on Deep Learning
下载PDF
导出
摘要 随着科学技术的发展,我国工业化水平也在迅速提高,工业零件质量的优劣将直接影响产品的性能,在投入使用前有必要对零件表面进行缺陷检测。笔者分析了传统零件缺陷检测方式的不足,提出一种基于深度学习的零件缺陷检测方法,在原有的BP神经网络算法中融入了基于深度学习的LLENet算法。该方法有效解决了检测效率低、检测速度慢等问题,提高了零件缺陷检测的精度。 With the development of science and technology,the level of industrialization in China is also improving rapidly.The quality of industrial parts will directly affect the performance of products.It is essential to detect the defects of industrial parts.In this paper,the shortcomings of traditional defect detection methods are analyzed,and a defect detection method based on deep learning is proposed.The LLENet algorithm based on deep learning is integrated into the original BP neural network algorithm.This method effectively solves the problems of low detection efficiency and slow detection speed,and improves the accuracy of parts defect detection.
作者 魏伟 张磊 Wei Wei;Zhang Lei(Department of Information and Control Engineering,Shenyang Institute of Science and Technology,Shenyang Liaoning 110167,China)
出处 《信息与电脑》 2019年第18期32-34,共3页 Information & Computer
基金 2019年沈阳市科技创新智库决策咨询课题“基于深度学习的工业产品缺陷检测研究”(项目编号:189)
关键词 深度学习 缺陷检测 LLENet算法 BP神经网络 deep learning defect detection LLENet algorithm BP neural network
  • 相关文献

参考文献3

二级参考文献74

  • 1林世毅,苏广川,陈东,韩晓广.基于小波变换和数学形态学的边缘检测法[J].仪器仪表学报,2004,25(z1):685-687. 被引量:24
  • 2LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 3HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 4LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 5HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 7GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 8LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 9SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 10SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.

共引文献575

同被引文献44

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部