期刊文献+

基于负载均衡的物联网多任务资源分配系统

IoT Multitasking Resource Allocation System Based on Load Balancing
下载PDF
导出
摘要 优化物联网多任务资源分配,可以提升物联网多任务资源分配调度的执行效率。基于此,笔者提出基于负载均衡的物联网多任务资源分配系统设计,硬件组成有网络接口层和WMN网络路由选择;软件设计包括任务分解模块、自主动态调度和物联网通信资源负载均衡调度模型3部分。通过实验对比图可知,随着资源量的增加,资源分配效率也不断提升,实验证明本文设计的资源分配系统在任务分配效率上远高于传统系统。 Optimizing the IoT multitasking resource allocation can improve the execution function of the IoT multitasking resource allocation scheduling.Based on this,the design of IoT multi-task resource allocation system based on load balancing is proposed.The hardware consists of network interface layer and WMN network routing.The software design includes task decomposition module,autonomous dynamic scheduling,and IoT communication resource load balancing scheduling model.Through the experimental comparison chart,the resource allocation efficiency increases with the increase of resources.The experiment proves that the resource allocation system designed in this paper is much higher than the traditional system in task allocation efficiency.
作者 黄志武 Huang Zhiwu(School of Computer and Information Science,Hubei Engineering University,Xiaogan Hubei 432000,China)
出处 《信息与电脑》 2019年第18期172-173,共2页 Information & Computer
基金 湖北省教育厅科学技术研究项目“非对称的物联网节点任务负载量的分配系统设计”(项目编号:B2019145)
关键词 负载均衡 物联网 多任务 资源分配 load balancing internet of things multitasking resource allocation
  • 相关文献

参考文献5

二级参考文献50

  • 1WEI Q, FLUECK A J, FENG T. A new parallel algorithm for security constrained optimal power flow with a nonlinear interior point method// Proceedings of IEEE PES General Meeting, July 12-15, 2005, San Francisco, CA, USA: 447- 453.
  • 2LIANG C H, CHUNG C Y, WONG K P, et al. Parallel optimal reactive power flow based on cooperative co- evolutionary differential evolution and power system decomposition. IEEE Trans on Power Systems, 2007, 22(1):249-257.
  • 3ALI M, DONG Z Y, LI X, et ah A grid computing based approach for probabilistic load flow analysis// Proceedings of IET International Conference on Advances in Power System Control, Operation 'and Management, October 30-November 2, 2006, Hong Kong, China.
  • 4WANG H, LIU Y. Power system restoration collaborative grid based on grid computing environment// Proceedings of IEEE PES General Meeting, July 12 16, 2005, San Francisco, CA, USA: 644-649.
  • 5ZHOU H F, WU F F, NI Y X. Design for grid service-based future power system control centers// Proceedings 05 IET International Conference on Advances in Power System Control, Operation and Management, October 30-November 2, 2006, Hong Kong, China.
  • 6TAYLOR G A, IRVING M R, HOBSON P R, et al. Distributed monitoring and control of future power systems via grid computing// Proceedings of IEEE PES General Meeting, June 17-23, 2006, Montreal, Canada.
  • 7ZHANG P, LEE T, SOBAJIC D. Moving toward probabilistic reliability assessment methods// Proceedings of Eighth International Conference on Probabilistic Methods Applied to Power Systems, September 12-14, 2004, Ames, IA, USA: 906- 913.
  • 8BILLINTON R, LI W. Reliability assessment of electric power systems using Monte Carlo methods. New York, NY, USA: Plenum Press, 1994.
  • 9ALI M,DONG Z Y, LI X, et al. RSA-grid: a grid computing based framework for power system reliability and security analysis// Proceedings of IEEE PES General Meeting, June 17-23, 2006, Montreal, Canada.
  • 10National Energy Technology Laboratory, United States Department of Energy. A vision for the modern grid [R/OL]. [2010-05-25]. http://www, bpa. gov/energy/N/smart _ grid/ does/Vision_ for_t heModernGrid_Final, pdf.

共引文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部