期刊文献+

基于支持向量机的故障诊断方法研究 被引量:8

A Study of Fault Diagnosis Method Based on SVM
下载PDF
导出
摘要 针对故障诊断中存在的故障样本不完备问题,提出一种基于支持向量数据描述(SVDD)与支持向量机(SVM)相结合的故障诊断方法。该方法首先以正常状态下的数据样本与已知故障数据样本为整体建立数据描述模型、依据已知故障数据样本建立支持向量分类机模型,然后对输入的测试数据样本采用SVDD进行拒绝与接受处理,被接受的样本再利用支持向量分类机进行具体类别诊断;被拒绝的样本则为未知故障类型。数值试验表明,该方法可以有效处理故障样本不完备的故障诊断问题,能够对已知故障类型进行准确判断,并对未知故障类型给出提示,具有一定的实践意义。 Aiming at the fault samples incomplete problems existing in the fault diagnosis, we put forward a kind of fault diagnosis method based on Support vector data description (SVDD) and Support vector machine (SVM). This method ifrstly set up normal data samples with known fault data samples for whole data description model, on the basis of known fault data samples based support vector classiifcation machine model, based on a known fault data samples to build support vector machine model, Then the test data of the input sample SVDD is adopted to deal with the refused or accept,acceptable sample using the SVM to classify speciifc diagnosis; The rejected samples are unknown fault type. Numerical experiments show that this method can efifciently solve the fault diagnosis problem of incomplete fault samples, while the unknown fault type giving prompt better implementation of known fault types of speciifc judgments, which has certain practical signiifcance.
出处 《新型工业化》 2015年第4期34-39,共6页 The Journal of New Industrialization
基金 国家自然科学基金资助(60974063 61175059) 河北省自然科学基金资助(NO:F2014205115)
关键词 支持向量数据描述 支持向量机 故障诊断 support vector data description support vector machine fault diagnosis
  • 相关文献

参考文献5

  • 1庄哲民,殷国华,李芬兰,江钟伟.基于小波神经网络的风力发电机故障诊断[J].电工技术学报,2009,24(4):224-228. 被引量:45
  • 2David M.J. Tax,Robert P.W. Duin.Support Vector Data Description[J]. Machine Learning . 2004 (1)
  • 3David M.J Tax,Robert P.W Duin.Support vector domain description[J]. Pattern Recognition Letters . 1999 (11)
  • 4Qian Yu-liang,Zhang Hao,Peng Dao-gang,et al.Fault diagnosis for generator unit based on RBF neural network optimized by GA- ??PSO. IEEE 8th international conference on natural computation . 2012
  • 5Emani M Z,Azirani A A.A method based on analytical hierarchy process for generator fault diagnosis.. 2010 IEEE proceedings of International Conference on Solid Dielectrics . 2010

二级参考文献11

  • 1Karki R, Hu P, Billinton. A simplified wind power generation model for reliability evaluation[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 533-540.
  • 2Cusido J, Jornet A, Romral L, et al. Wavelet and PSD as fault detection techniques[C]. IEEE Proceedings of the Technology Conference on Instrumentation and Measurement, 2006: 1397-1400.
  • 3Liu B. Selection of wavelet packet basis for rotating machinery fault diagnosis[J]. Journal of Sound and Vibration, 2005, 284: 567-582.
  • 4Liu Chaochun, Dai Daoqing, Yan Hong. Local discriminant wavelet packet coordinates for face recognition[J]. The Journal of Machine Learning Research, 2007(8): 1165-1195.
  • 5Umapathy K, Krishnan S. Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(3):517-523.
  • 6Umapathy K, Krishnan S. Audio signal feature extraction and classification using local discriminant bases [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4): 1236-1246.
  • 7Umapathy K, Krishnan S. Modified local discriminant bases and its application in signal classification[C]. IEEE Proceedings of the Conference on Acoustics, Speech, and Signal Processing, 2004, 2: 745-748.
  • 8Chu J U, Moon I, Mun M S. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand[J]. IEEE Transactions on Biomedical Engineering, 2006,53(11): 2232-2239.
  • 9Berglund E, Sitte J. The parameterless self-organizing map algorithm[J]. IEEE Transactions on Neural, 2006, 17(2): 305-316.
  • 10Noriega G. Self-organizing maps as a model of brain mechanisms potentially linked to autism[J]. IEEE Transactions on Rehabilitation Engineering, 2007, 15(2): 217-226.

共引文献47

同被引文献64

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部