期刊文献+

深度学习神经网络在电潜泵井口排量预测与工况诊断中的应用 被引量:3

Application of Deep Learning Neural Network in Wellhead Discharge Prediction and Working Condition Diagnosis of ESP
下载PDF
导出
摘要 针对潜油电泵井运行状态的多变量、非线性、强耦合的复杂时序系统,传统的电流卡片、参数阈值方法难以建立精确的工况诊断与产量预警模型,提出一种基于深度学习循环神经网络的长短时记忆算法对电泵井运行状态建模。利用海上油田电泵井大量实时数据,基于Tensorflow框架搭建神经网络模型,实现电泵井井口产量预测,并实现多种异常工况的诊断。 For multivariable, non-linear and strongly coupled complex time series system of ESP wells, traditional current card and parameter threshold methods can not establish accurate condition diagnosis and production forewarning model. The paper proposes long and short term memory algorithm based on deep learning cycle neural network to model operation state of electric pump wells. Based on large number of real-time data of electric pump wells in offshore oilfields, it builds neural network model based on Tensorflow framework to predict wellhead production of electric pump wells and diagnose various abnormal conditions.
作者 袁向兵 YUAN Xiang-bing(Offshore Oil Production Plant,Shengli Oilfield Branch,Sinopec,Dongying,Shandong 257237)
出处 《新型工业化》 2019年第1期80-86,共7页 The Journal of New Industrialization
关键词 深度学习 RNN LSTM Tensorflow 潜油电泵 井口排量 工况诊断 Deep learning RNN LSTM Tensorflow Electric submersible pump Wellhead displacement Condition diagnosis
  • 相关文献

参考文献2

二级参考文献22

共引文献16

同被引文献26

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部