期刊文献+

无线RF能量收集异构网络中基于Q-Learning的自适应功率控制

Q-Learning Based Adaptive Power Control for Wireless HetNets with RF Energy Harvesting
下载PDF
导出
摘要 针对信息与能量同传Femtocell异构网络,建立了数学优化问题,目的是通过调节Femtocell发射功率来抑制干扰信号对信息传输的影响,同时有效利用干扰信号为设备充电,在满足用户信息通信服务质量以及传感器能量收集的条件下,最大化Femtocell基站群总容量。为求解此优化问题,设计了一种基于强化学习的自适应功率控制算法,给出了算法框架和求解方法,并提出一种基于距离影响和惩罚参数的分段式奖励函数。为了比较,还给出了一种基于网络容量和约束关系的奖励函数。仿真实验验证了所提算法的有效性,即在保障信息用户和能量用户通信服务质量的前提下,可提高Femtocell异构网络的总容量。实验还表明,采用所提分段式奖励函数能够取得更好的系统优化效果。 This paper investigates Femtocell HetNets with the information and energy transferring simultaneously. For such a network, we propose an optimization problem mathematically to explore the effect of the interference signal on the system by adjusting the transmit power, and charge the device by the interference signal. The goal of the problem is to maximize the sum capacity of the Femtocell base station group while satisfying the user’s quality of service(QoS) and sensors’ harvested energy. In order to solve this problem, we design an adaptive power control algorithm based on reinforcement learning. The algorithm framework and corresponding solution is presented. Meanwhile, we propose a piecewise reward function based on distance and penalty parameters.For comparison, we design another reward function based on network capacity and constraint relationship. Simulation results verify the effectiveness of the proposed algorithm. The total capacity of the system is increasing while satisfying the users’ QoS and sensors’ charging. And the numerical results show that the proposed piecewise reward function can achieve better system optimization results.
作者 郭伟 于小涵 张锐晨 熊轲 GUO Wei;YU Xiao-han;ZHANG Rui-chen;XIONG Ke(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044)
出处 《新型工业化》 2019年第1期112-119,共8页 The Journal of New Industrialization
基金 国家自然科学基金(61671051)
关键词 Femtocell异构网络 Q-LEARNING 功率控制 能量收集 Femtocell HetNets Q-Learning Power control Energy harvesting
  • 相关文献

参考文献8

二级参考文献47

  • 1周四望,林亚平,聂雅琳,王继良,张锦.无线传感器网络中基于数据融合的移动代理曲线动态路由算法研究[J].计算机学报,2007,30(6):894-904. 被引量:40
  • 2高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 3Akyildiz IF,Melodia T,Chowdhury KR. A survey on wireless multimedia sensor networks[J].Computer Networks,2007,(04):921-960.doi:10.1016/j.comnet.2006.10.002.
  • 4Lin Y,Hu XM,Zhang J. An ant-colony-system-based activity scheduling method for the lifetime maximization of heterogeneous wireless sensor networks[A].Portland,Oregon,USA,.
  • 5Hu XM,Zhang J,Yu Y,Chung H,Li YL,Shi YH,Luo XN. Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks[J].IEEE Transactions on Evolutionary Computation,2010,(05):766-781.
  • 6Lin Y,Hu XM,Zhang J. Optimal node scheduling for the lifetime maximization of two-tier wireless sensor networks[A].Spain:Barcelona,2010.1-8.
  • 7Lin Y,Zhang J,Chung HSH,Ip WH,Li Y,Shi YH. An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks[J].IEEE Trans on System Man and Cybernetics-Part C,2012,(03):408-420.
  • 8Konstantopoulos C,Mpitziopoulos A,Gavalas D,Pantziou G. Effective determination of mobile agent itineraries for data aggregation on sensor networks[J].IEEE Transactions on Knowledge and Data Engineering,2010,(12):1679-1693.
  • 9Chen M,Yang LT,Kwon T,Zhou L,Jo M. Itinerary planning for energy-efficient agent communications in wireless sensor networks[J].IEEE Transactions on Vehicular Technology,2011,(07):3290-3299.
  • 10Chen M,Gonzalez S,Leung VCM. Applications and design issues for mobile agents in wireless sensor networks[J].IEEE Transactions on Wireless Communications,2007,(06):20-26.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部