摘要
对话流所隐含的信息包括了学习者对所学课程内容的掌握程度和关注点,分析这些对话流对预测学习者的成绩,以支持教师提前对潜在成绩不良的学生进行及时干预有着重要意义.提出了一种基于对话流的学习者成绩等级预测算法ARPDF(Achievement Rank Prediction based on Dialogue Flow),首先采集对话流,通过对话流划分、对话状态矩阵生成实现了对该对话流的分析以获取到学习小组的对话状态矩阵;在此基础上,通过基于LSTM的预测模型获得学习小组学习者的成绩等级.在本文所提方法的基础上进行了实验,其结果表明了该算法是有效的.
The information contained in the dialogue flowincludes the learners’ mastery and focus of the content of the courses they have learned. It is of great significance to analyze these dialogue flows to predict the learner’s performance in order to support teachers’ timely intervention of potential bad grade students. This paper proposes a learners’ achievement rank prediction algorithm based on dialogue flowARPDF( Achievement Rank Prediction based on Dialogue Flow). Firstly,the dialog flowis collected and through dialog flowpartitioning and dialog state matrix generation,ARPDF finishes the analysis of the dialogue flowto obtain the learner group’s dialogue state matrix. Secondly,ARPDF predicts the learner group’s achevement rank through the LSTM-based prediction model. Based on the method proposed in this paper,experiments are carried out. The results showthat the algorithm is effective.
作者
罗达雄
叶俊民
郭霄宇
王志锋
陈曙
LUO Da-xiong;YE Jun-min;GUO Xiao-yu;WANG Zhi-feng;CHEN Shu(School of Computer,Central China Normal University,Wuhan 430079,China;School of Educational Information Technology,Central China Normal University,Wuhan 430079,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2019年第2期267-274,共8页
Journal of Chinese Computer Systems
基金
国家社会科学基金一般项目(17BTQ061)资助
关键词
学习社区
对话流
成绩等级预测
learning community
dialogue flow
achievement rank prediction