期刊文献+

一种基于卷积神经网络的Web攻击检测方法 被引量:22

Web Attack Detection Method Based on Convolutional Neural Network
下载PDF
导出
摘要 随着攻击Web应用程序工具的增多,Web服务面临众多安全威胁.目前检测Web攻击的方法主要是规则匹配,难以高效识别Web攻击流量.提出一种基于卷积神经网络的Web攻击检测方法,将Web请求流量转换为灰度图,即流量图像.针对传统卷积神经网络只能处理固定大小输入的局限,搭建基于空间金字塔池化的卷积神经网络,使之适于处理大小不同的Web流量,并从众多Web流量中识别出攻击流量.实验表明,该方法比规则匹配的方式及传统的卷积神经网络在识别Web攻击流量时更加高效准确. With the increase in attacks on web application tools,web services face numerous security threats. At present,the method of detecting Web attacks is mainly rule matching,and it is difficult to efficiently identify Web attack traffic. A Web attack detection method based on convolutional neural network is proposed. The Web request traffic is converted into a gray-scale image,that is,a traffic image. For the traditional convolutional neural network can only deal with the limitations of fixed-size input,build a convolutional neural network based on space pyramid pooling,fully handle web traffic of different sizes,and identify attack traffic from numerous web traffic. Experiments showthat the method is more efficient and accurate than the rule matching method and the traditional convolutional neural network in identifying Web attack traffic.
作者 田俊峰 石伟 TIAN Jun-feng;SHI Wei(College of Computer Science and Technology,Hebei University,Baoding 071000,China;Key Laboratory on High Trusted Information System in Hebei Province,Baoding 071000,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第3期584-588,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61170254 60873203)资助 河北省自然科学基金重点项目(F6201244)资助
关键词 WEB攻击 CNN SPP Web attack CNN SPP
  • 相关文献

参考文献7

二级参考文献36

  • 1任伟,蒋兴浩,孙锬锋.基于RBF神经网络的网络安全态势预测方法[J].计算机工程与应用,2006,42(31):136-138. 被引量:71
  • 2李勇,左志宏.目标代码混淆技术综述[J].计算机技术与发展,2007,17(4):125-127. 被引量:10
  • 3MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 4MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 5李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 610 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 7Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 8Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 9Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 10Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.

共引文献2600

同被引文献194

引证文献22

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部