期刊文献+

NEAR模型的外墙面裂缝连接算法

Exterior Wall Crack Connection Algorithm for NEAR Model
下载PDF
导出
摘要 在利用数字图像技术检测大型建筑物外墙面裂缝时,墙面上的裂缝宽度过窄,或是被灰尘填充而变得不清晰,又或是图像预处理过度导致提取到的裂缝出现断裂等情况,均会影响到后续如裂缝面积、长度、宽度、走势等参数的测量和评估.为了解决这个问题,本文提出了一种基于山脊线邻域的评价模型(NEAR)来判断和描述裂缝间的连续性,并根据其判断和描述结果,结合二次贝塞尔插值完成裂缝间的平滑连接.此外,本文还进行了对比试验,利用基于Hausdorff距离的最小二乘法对NEAR算法结果和K-D树算法结果进行评估比较.实验结果表明,该算法能明显提高判断裂缝连续性的准确程度. There exists undeniable bias during the process of detecting,measuring and assessing wall cracks on buildings.It is because of dusts,the clarity of cracks and image overpreprocessing.In this paper we proposed a NEAR(NEighborhood Assessment of Ridge)model to determine and describe the continuity of cracks,according to which we could stitch cracks by means of quadratic Bezier interpolation.Then the results were compared with that applying k-d tree algorithm by Hausdorff-distance-based least square method,which show an evident superiority of NEAR model.
作者 吴生宇 李明心 林靖宇 WU Sheng-yu;LI Ming-xin;LIN Jing-yu(College of Electrical Engineering,Guangxi University,Nanning 530004,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第5期1054-1058,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61561005)资助
关键词 建筑物外墙面裂缝 山脊线邻域评价模型 二次贝塞尔插值 裂缝连接 HAUSDORFF距离 wall cracks on buildings NEAR model quadratic Bezier interpolation crack connection Hausdorff distance
  • 相关文献

参考文献6

二级参考文献43

  • 1段瑞玲,李玉和,李庆祥,贾惠波.非线性阈值自调整小波图像去噪方法研究[J].光电子.激光,2006,17(7):871-874. 被引量:20
  • 2汪大绥,周建龙,袁兴方.上海环球金融中心结构设计[J].建筑结构,2007,37(5):8-12. 被引量:31
  • 3李玉峰,郭锐.基于小波影响锥分析的图像去噪方法[J].光电子.激光,2007,18(6):753-756. 被引量:3
  • 4ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 5BENNET J,LANNING S.The netflixprize[EB/OL].[2009-06-20].http://www,netflixprize,com/assets/NetflixPrizeKDD_to_appear.pdf.
  • 6BELL R,KOREN Y.Improved neighborhood-based collaborative filtering[EB/OL].[2009-06-20].http://public,research,att.com/-volinsky/netflix/cfworkshop,pdf.
  • 7SARWA B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web.New York:ACM,2001:285-295.
  • 8WANG JUN,de VRIES A P,REIDERS M J T.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2006:501-508.
  • 9MA HAO,KING I,LYU M R.Effective missing data prediction for collaborative filtering[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2007:39-46.
  • 10SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensianality reduction in recommender systems:A case study.[EB/OL].[2009-06-20].http://robotics.Stanford.edu/-ronnyk/WEBKDD2000/papers/sarwa.,pdf.

共引文献284

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部