期刊文献+

目标尺寸自适应压缩感知跟踪算法

A target size adaptive compressive tracking
下载PDF
导出
摘要 压缩感知近年来在目标跟踪领域得到了广泛应用,它对海量特征压缩降维,在贝叶斯分类器模型下能取得很好的分类效果,处理速度快,具有实时性。但尺寸固定不变的跟踪窗口不能有效跟踪存在明显尺度变化的目标。本文采用多尺度和级联分类器机制,选取最佳尺度下的窗口作为最终目标。实验结果表明,本算法不仅在目标形态变化、光线变化、多目标干扰、运动模糊等复杂场景下有较好跟踪效果,在目标尺度变化时也有较强鲁棒性。 Compressive Sensing has been successfully applied to visual tracking for its high efficiency and robustness in dimension reduction. It can achieve amazing classification results by using naive Bayes classifier with high frame rate. Nevertheless, it performs poorly while tracking targets with obvious scale change. An improved algorithm based on compressive tracking is proposed, which adopts multi-scale and cascade classifier to determinate the best scale and position. Experiment results indicate this algorithm not only performs well in challenging scenes such as pose variation, abrupt illumination, multi-target interference, motion blur, but also prevails in scale variant sequences.
作者 苗青 谭伟
出处 《太赫兹科学与电子信息学报》 2015年第3期431-435,共5页 Journal of Terahertz Science and Electronic Information Technology
关键词 压缩感知 跟踪 多尺度 尺寸自适应 compressive sensing tracking multi-scale size adaptive
  • 相关文献

参考文献10

  • 1K. Zhang,L. Zhang,M. H. Yang.Real-Time Compressive Tracking. ECCV . 2012
  • 2M.S. Arulampalam,S. Maskell,N. Gordon,T. Clapp.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing . 2002
  • 3Babenko, B.,Ming-Hsuan Yang,Belongie, S.Robust Object Tracking with Online Multiple Instance Learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on . 2011
  • 4Kalal, Zdenek,Mikolajczyk, Krystian,Matas, Jiri.Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • 5Xue Mei,Haibin Ling.Robust Visual Tracking and Vehicle Classification via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011
  • 6E. J. Candes,T. Tao.Decoding by linear programming. IEEE Transactions on Information Theory . 2005
  • 7Persi Diaconis,David Freedman.Asymptotics of graphical projection pursuit. The Annals of Statistics . 1984
  • 8Yong Seok Heo,Kyoung Mu Lee,Sang Uk Lee.Robust Stereo Matching Using Adaptive Normalized Cross-Correlation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011
  • 9Andrew N,Jordan M.On discriminative vs generative classifiers: a comparison of logistic regression and naive Bayes. In Neural Information Processing Systems . 2002
  • 10KALAL Z,MATAS J,MIKOLAJCZYK K.P-N learning:Bootstrapping binary classifiers by structural constraints. ICIP’’10:IEEE Conference on Computer Vision and Pattern Recog-nition . 2010

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部