摘要
为压缩复数合成孔径雷达(SAR)图像,基于压缩感知理论,设计了基于训练字典优化测量矩阵。该方法可增强测量矩阵的列之间的不相关性,有效地降低测量矩阵列向量间的互相干性,提高重构结果的精确度。基于优化后的测量矩阵,可以获取更好的复数SAR图像压缩结果。通过真实场景的复数SAR图像实验,验证了该算法的有效性。
Anoptimized measurement matrix is designed to compress complex-valued Synthetic Aperture Radar(SAR) images based on Compressive Sensing(CS). The proposed measurement matrix can enhance the incoherence between columns and mitigate the mutual coherence of the measurement matrix effectively giving rise to improvement in the accuracy of reconstruction result. Based on the optimized measurement matrix, a better compression result can be obtained for the complex SAR image. The effectiveness of the proposed method is validated by using the real field data.
出处
《太赫兹科学与电子信息学报》
2015年第6期930-936,共7页
Journal of Terahertz Science and Electronic Information Technology
基金
国家自然科学基金资助项目(No.61471185)
浙江省自然科学基金资助项目(No.LY16F010018)
鲁东大学人才引进基金资助项目(No.LY2014031)
关键词
复数合成孔径雷达图像
压缩感知
测量矩阵
complex Synthetic Aperture Radar image
Compressed Sensing
measurement matrix