期刊文献+

融合社会标签的联合概率矩阵分解推荐算法 被引量:4

Unified Probabilistic Matrix Factorization Recommendation Algorithm Fusing Social Tagging
原文传递
导出
摘要 传统的推荐系统只使用用户的评分信息进行计算并进行推荐,虽然在一定程度上能够获得用户或资源的隐含特征,但缺乏足够的语义解释,影响了推荐效果.针对此问题,提出了一种融合社会标签的近邻感知的联合概率矩阵分解推荐算法.首先,该算法通过标签的相似性来计算用户间和资源之间的相似性,进行近邻选择;其次,构建用户—资源评分矩阵、用户—标签标注矩阵、资源—标签关联矩阵并运用联合概率矩阵分解方法计算3个矩阵的隐含特征向量,通过对训练模型进行参数优化,为用户进行推荐.实验结果表明,该算法可以有效利用标签的语义性,提高推荐质量. Traditional recommendation systems only use the users' rating information for the calculation and the recommendation. We can obtain the latent feature of the users or the resources to some extent but cannot get enough semantic interpretation which affects recommendation results. In order to solve this problem,we propose a neighborhood-aware unified probabilistic matrix factorization recommendation algorithm which combines social tags. First,we calculate the similarity between the users and the resources through the similarity of the tags to make neighborhood selection. Second,we construct a user-resource rating matrix,a user-tag tagging matrix and a resources-tag correlation matrix,and use the unified probability matrix factorization to get the latent feature vectors of three matrices to recommend by optimizing training model parameter. The experimental results show that the proposed algorithm can effectively use the semantics of the tags and improve the recommendation quality.
出处 《信息与控制》 CSCD 北大核心 2017年第4期400-407,共8页 Information and Control
基金 国家自然科学基金重点资助项目(71431002) 国家创新群体项目(71421001) 辽宁省自然科学基金资助项目(2015020035) 辽宁省教育厅一般项目(71600136)
关键词 社会标签 近邻感知 联合概率矩阵分解 推荐算法 social tagging neighborhood-aware unified probability matrix factorization recommendation algorithm
  • 相关文献

参考文献5

二级参考文献66

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906].
  • 3Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148.
  • 4Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119].
  • 5Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265].
  • 6Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837].
  • 7Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554].
  • 8Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813].
  • 9Belkin N, Croft B. Information filtering and information retrieval. Communications of the ACM, 1992,35(12):29-37. [doi: 10.1145/138859.138861].
  • 10Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. [doi: 10.1145/245108.245124].

共引文献525

同被引文献30

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部