期刊文献+

基于局部权重角度离群算法的球磨机故障诊断 被引量:3

Fault Diagnosis of Ball Mill Based on LW-FastVOA Algorithm
原文传递
导出
摘要 矿用球磨机故障诊断是典型的复杂工业过程多维数据挖掘问题,难点在于多维数据挖掘准确度低且算法时间复杂度高,为此提出基于局部权重角度离群算法(LW-FastVOA)的数据挖掘方法.首先采用角度离群算法(ABOD)在多维空间中衡量数据点的离群度,并针对ABOD算法时间复杂度算法较高问题,采用FastVOA算法将数据集正交投影于随机超平面上,利用AMS草图推导出各点的方差,归纳将其投影到随机超平面上作为频矩参数,算法的时间复杂度降低.最后提出LWFastVOA算法增加数据点的局部权重,降低多聚簇间离群点遗漏率,从而提高了算法精度.仿真实验结果表明,所提出的LW-FastVOA算法提高了精确率与召回率,验证了算法的有效性和可行性. Fault diagnosis of a ball mill is a typical multi-dimensional data mining problem in complex industrial processes. The difficulty of this problem lies in the low accuracy and high time complexity of multi-dimensional data mining. We propose a FastVOA with local weight( LW-FastVOA) to solve the problem. First,we apply the angle-based outlier detection( ABOD) to measure the outlier factor. Then,we use the FastVOA algorithm to reduce the time complexity of ABOD. The algorithm projects the dataset on random hyperplanes orthogonally and then derives the variance with AMS sketches. The frequency moments of the points are approximated by summarizing and projecting on the random hyperplanes. Finally,we propose the LW-FastVOA algorithm to add the local weight of the data points and reduce the omission rate of outliers among clusters to improve the accuracy. Simulation results show that the LW-FastVOA algorithm improves the precision rate and recall rate in fault diagnosis,thereby verifying the effectiveness and feasibility of the algorithm.
出处 《信息与控制》 CSCD 北大核心 2017年第4期489-494,共6页 Information and Control
基金 国家863计划资助项目(2011AA040103) 沈阳市科技局科技重大攻关(创新专项)基金资助项目(F15-007-2-00)
关键词 故障诊断 角度离群算法 LW-FastVOA算法 随机超平面 AMS草图 fault diagnosis angle-based outlier detection(ABOD) LW-FastVOA algorithm random hyperplane projection AMS sketch
  • 相关文献

参考文献8

二级参考文献77

  • 1樊红东,胡昌华,陈茂银,周东华.基于退化数据的最优预测维护决策支持方法[J].华中科技大学学报(自然科学版),2009,37(S1):45-48. 被引量:7
  • 2常玉清,王小刚,王福利.基于多神经网络模型的软测量方法及应用[J].东北大学学报(自然科学版),2005,26(6):519-522. 被引量:13
  • 3严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 4李双虎,张风海.一个新的聚类有效性分析指标[J].计算机工程与设计,2007,28(8):1772-1774. 被引量:14
  • 5薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 6REED I S,YU X.Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Trans Acoust,Speech Singal Process,1990,38(10):1760-1770.
  • 7HARSANYI J C,CHANG C I.Hyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):779-785.
  • 8REN H,CHEN C W,CHEN H T.Weighted anomaly detection for hyperspectral remotely sensed images[C].Proc of SPIE.Boston:InternationalSociety for Optical Engineering,2005,5995:599507-1.
  • 9MEI Feng,ZHAO Chun-hui,HUO Han-jun,et al.An adaptive kernel method for anomaly detection in hyperspectral imagery[C].Proceedings2nd International Symposium on Intelligent Information Technology Application.Washington:IEEE Computer Society,2008,1:874-878.
  • 10SCHOLKOPF B,SMOLA A J.Learning with Kernels[M].Cambrige:The MIT Press,2002.

共引文献187

同被引文献9

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部