期刊文献+

基于纠删码技术的云存储数据块部署方案 被引量:4

Erasure Code Based Data Block Deployment Method in Cloud Storage
原文传递
导出
摘要 针对云存储系统中因忽视集群中存储节点之间的差异而引起的存储代价过高、可靠性较低、节点负载能力不足等问题,提出了段排序交换算法(FSSA).首先对数据块部署问题进行数学建模;然后根据各个节点的负载情况进行分段,并在各个分段中依据数据可靠性的需求对节点进行初步选择;最后根据数学模型中对目标函数的分析在分段选择的结果中选取适当的节点进行数据部署.仿真结果表明,采用FSSA算法可以在保证数据存储可靠性的基础之上,降低数据存储代价、增强系统负载均衡能力. Aiming at the problems of high storage cost,low reliability,and insufficient node load balancing capacity caused by ignoring the difference between storage nodes in a cloud storage,we propose a fragment sort swap algorithm(FSSA).First,we establish a mathematical model for the data block placement problem.Then,we divide the fragments according to the load condition of each node and select the nodes according to the requirements of data reliability in each segment.Finally,according to the analysis of the objective function in the mathematical model,we select the appropriate nodes in the segmentation result to place data.The simulation results show that the proposed FSSA algorithm can reduce data storage cost and enhance system load balancing ability in addition to ensuring the reliability of data storage.
作者 沈记全 谢果君 杨焕焕 SHEN Jiquan;XIE Guojun;YANG Huanhuan(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《信息与控制》 CSCD 北大核心 2019年第2期232-238,256,共8页 Information and Control
基金 河南省基础与前沿研究资助项目(152300410212)
关键词 数据块部署 云存储 存储代价 大数据 纠删码 data block deployment cloud storage storage cost big data erasure code
  • 相关文献

参考文献8

二级参考文献84

  • 1董新华,李瑞轩,周湾湾,王聪,薛正元,廖东杰.Hadoop系统性能优化与功能增强综述[J].计算机研究与发展,2013,50(S2):1-15. 被引量:70
  • 2Global action plan, an inefficient truth[EB/OL]. Global action plan report, 2007 [ 2011-02-12 ]. http:// globalactionplan, org. uk.
  • 3Yun D, Lee J. Research in green network for future Intcrnet [J]. Journal of Korean Institute of Information Scientists and Engineers, 2010, 28(1): 41-51.
  • 4Barroso L A, Hlzle U. The datacenter as a computer: An introduction to the design of warehouse-scale machines [R]. Morgan: Synthesis I.ectures on Computer Architecture, Morgan & Claypool Publishers, 2009.
  • 5Ghemawat S, Gobioff H, Leung S T. The google gile system[C] //Proc of the 19th ACM Symp on Operating System Principles. New York= ACM, 2003:29-43.
  • 6Borthaku D. The hadoop distributed file system: Architecture and design [EB/OL]. (2007 -07 -01) [2011- 2 -12]. http: //hadoop. apache, org/common/docs/r0. 18. 2/hdfs design, pdf.
  • 7Dean J, Ghemawat S. MapReduce: Simplifed data processing on large clusters [C] //Proc of the Conf on Operating System Design and Implementation (OSDI). New York: ACM, 2004, 137-150.
  • 8Li D, Wang J E. Energy efficient redundant and inexpensive disk array [C] //Proc of the ACM SIGOPS European Workshop. New York: ACM, 2004:29-35.
  • 9Benini L, Bogliolo A, Micheli G D. A survey of design techniques for system-level dynamic power management [J]. IEEE Trans on Very Large Scale Integration (VLSI) Systems, 2000, 8(3): 299-316.
  • 10Albers S. Energy-efficient algorithms [J]. Communications of the ACM, 2010, 53(5): 86-96.

共引文献141

同被引文献43

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部