摘要
目的构建中药方剂数据挖掘系统,直观反映方剂属性及方剂之间的相似度,为方剂研究及应用提供参考。方法应用爬虫框架和手工录入方式获取一定数量的经典方剂,采用中文分词工具和手工整理方式对方剂信息进行名称、功能、来源、中药组成、剂量、剂量单位、炮制方法、忌宜、主治等属性拆分,构造语料词库,Python3.5环境下采用TF-IDF算法计算方剂间相似度并进行功能主治验证,采用d3.js进行可视化展示。结果经过分词和手工整理得到不同类型方剂7710首,包含药物8957味,构建的中药方剂数据挖掘系统实现了相似度和方剂构成等信息可视化展示。同时,相似度高的方剂在功能主治方面具相似性。结论本研究构建的中药方剂数据挖掘系统可直观展示方剂信息、方剂与药物间的关联关系及方剂之间的相似度。
Objective To construct a data mining system for TCM prescriptions;To visually reflect the prescription properties and similarity between prescriptions;To provide references for research and application of prescriptions.Methods A reptile framework and manual entry method were used to obtain a certain number of classical prescriptions.The Chinese word segmentation tool and the manual finishing method were used for splitting the information of prescriptions according to the name,function,source,TCM composition,dosage,dosage unit,processing method,contraindication and indication.The corpus was constructed.In Python 3.5 environment,the TF-IDF algorithm was used to calculate the similarity between prescriptions and to perform functional indication verification,and d3.js was used for visual display.Results Through word segmentation and manual finishing,7710 kinds of prescriptions of various types were obtained,including 8957 kinds of Chinese materia medica.The constructed TCM prescription data mining system realized information visualization of similarity and prescription composition.At the same time,prescriptions with high similarity were similar in terms of functional indications.Conclusion The TCM prescription data mining system constructed in this study can visually display the relationship between the prescription information,the prescription and the Chinese materia medica,and the similarity between the prescriptions.
作者
郭文龙
罗熊
姜惠娟
谢永红
陈茂建
GUO Wenlong;LUO Xiong;JIANG Huijuan;XIE Yonghong;CHEN Maojian(Science Teaching Department,Gansu University of Chinese Medicine,Dingxi 743000,China;School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出处
《中国中医药信息杂志》
CAS
CSCD
2019年第7期104-108,共5页
Chinese Journal of Information on Traditional Chinese Medicine
基金
国家重点研发计划(2017YFB1002304)
甘肃省高校项目(2018A-177)