期刊文献+

基于冲突指导的神经网络预测方法 被引量:1

Neural networks prediction method based on violation guide
下载PDF
导出
摘要 研究基于冲突指导的神经网络预测技术.利用离散约束最优的拉格朗日乘数理论,通过采用前馈方法得到近似梯度的模拟退火技术,避免了盲目接受试验点.利用松紧策略加快了搜索的收敛速度.实验结果表明,训练误差和预测误差都有很大改善. The neural network prediction technique based on the impulse guidance is discussed. On the basis of the theory of discrete constrained optimal Lagrange multiplicator, we avoided to accept test points sightlessly with the simulated anneal technique from the approximate grades through the forward propagation method, and accelerated the search speed using Relaxed & Tighten strategy. The experiment result shows that the training error and the prediction error have been improved greatly.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2004年第1期88-93,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60175024) 教育部科学技术研究重点项目(批准号:02090) 教育部"符号计算与知识工程"重点实验室资助项目.
关键词 冲突指导 神经网络 拉格朗日乘数理论 模拟退火 时间序列预测 violation guide prediction neural networks
  • 相关文献

参考文献4

  • 1[1]Wah B W, QIAN Ming-lun. Violation-guided learning for constrained formulations in neural network time series prediction [C]. Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence. Washington: Morgan Kaufmann, 2001: 771-776.
  • 2[2]Wah B W, QIAN Ming-lun. Violation guided neural network learning for constrained formulations in time-series predictions [J]. Int'l Journal on Computational Intelligence and Applications, 2001, 1(4): 383-398.
  • 3[3]Wan E A. Finite impulse response neural networks with applications in time series prediction [D]: [Ph D Thesis]. Stunford: Standford University, 1993.
  • 4[4]Wah B W, QIAN Ming-lun. Constrained formulations and algorithms for stock-price predictions using recurrent FIR neural networks [C]. Eighteenth International Conference on Artificial Intelligence. Edmonton, Alberta: AAAI, 2002: 211-216.

同被引文献11

  • 1邹柏贤,姚志强.一种网络流量平稳化方法[J].通信学报,2004,25(8):14-23. 被引量:18
  • 2Tobias O, Dave R. MRTG: the Multi Router Traffic Grapher [ EB/OL]. [2004-09]. http://www. mrtg. org.
  • 3Case J D, Fedor M, Schoffstall M. A Simple Network Management Protocol (SNMP) [S/OL]. RFC1157. [ 1990-05 ].http ://www. ietf. org/rfc/rfc1157. txt? number = 1157.
  • 4Galvin J M, McCloghrie K. Administrative Model for Version 2 of the Simple Network Management Protocol (SNMPv2)[S/OL]. RFC 1445. [ 1993-04]. http://www. ietf. org,/rfc/rfcl445. txt? number = 1445.
  • 5Paxson V, Floyd S. Wide Area Traffic: the Failure of Poisson Modeling [ J]. IEEE/ACM Trans on Networking, 1995,3 (3) : 224-226.
  • 6Majid G. On the Relevance of Self-similarity in Network Traffic Prediction [ EB/OL]. [ 2005-04]. http://www. cs.uwaterloo, ca/cs-archive/CS-2003/28/TR-CS-2003-28. pdf.
  • 7Tsybakov B. Self-similar Process in Communications Networks [ J ]. IEEE Trans on Information Theory, 1998, 44(5) :1713-1725.
  • 8Leland W E, Taque M, Willinger W, et al. On the Self-similar Nature of Ethernet Traffic [J]. IEEE/ACM Trans Networking, 1994, 2( 1 ) : 1-15.
  • 9丛锁,吴甘沙,张伟,高传善.网络状态参数监测与MRTG的应用[J].微型电脑应用,2000,16(4):51-53. 被引量:17
  • 10卢苇,严斌宇,郑畅.MRTG软件在校园网状态参数监测中的应用[J].四川大学学报(自然科学版),2001,38(2):189-192. 被引量:15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部