期刊文献+

全息反射镜的矩阵分析方法和数值模拟 被引量:1

Matrix Analysis and Numeric Simulation of Holographic Mirrors
原文传递
导出
摘要 提出采用特征矩阵的方法研究全息反射镜 (HM)的特性。在矩阵建立过程中考虑了介质折射率是连续变化的 ,并且根据全息介质的特性采用小波数近似 ,同时充分利用了光栅结构的周期性特点。该方法模型简单 ,物理意义直观、明确 ,并且只要增加细分层数值 ,或将幂级数展开到波数k的更高阶次 ,就可以提高计算精度。该方法不受“近布拉格入射”条件的限制 ,光栅周围的不同介质只要附加相应的特性矩阵就可以解决。对不同厚度、不同折射率调制度的全息光栅的反射率。 A simple and explicit characteristic matrix analysis is used to deal with the holographic mirrors (holographic volume gratings). The continuously varying of the refractive index is considered, and according to the property of holographic material, the small wavenumber approximation is utilized and the periodicity of the grating is used. The calculated precision can be improved by increasing the number of sublayer or developing the terms of power up to higher. The method does not be restricted to region of “near Bragg incidence” and is suitable to solve problems of gratings bounded by two different media. Then the reflectivities, the angular selectivities and the wavelength selectivities of several gratings are computed as numeric simulation.
作者 陈西园
出处 《中国激光》 EI CAS CSCD 北大核心 2004年第1期85-88,共4页 Chinese Journal of Lasers
关键词 全息反射镜 特征矩阵 全息光栅 衍射特性 optoelectronics holographic mirror characteristic matrix holographic grating diffraction character
  • 相关文献

参考文献8

  • 1L. Sica, T. Aye, I. Tengara et al.. Compensation of spacer-thickness variations in a holographic Fabry-Perot filter [J].Appl. Opt., 1994, 33(22):5021-5028.
  • 2W. Wang. Reflection and transmission properties of holographic mirrors and holographic Fabry-Perot filter. Ⅰ. Holographic.mirrors with monochromatic light [J]. Appl. Opt. , 1994, 33(13) :2560-2566.
  • 3T. K. Gaylord, M. G. Moharam. Analysis and application of optical diffraction by gratings [J]. Proc. IEEE, 1985, 73(5):894-937.
  • 4H. Kogelnik. Coupled wave theory for thick hologram gratings[J]. Bell. Syst. Tech. J. , 1969, 48(9):2909-2947.
  • 5U. Langbein, F. Lederer. Modal theory for thick holographic gratings with sharp boundaries, Ⅰ. General treatment [J].Opt. Acta, 1980, 27(2):171-182.
  • 6F. Lederer, U. Langbein. Modal theory for thick holographic gratings with sharp boundaries, Ⅱ. Unslanted transmission and reflection gratings [J]. Opt. Acta, 1980, 27(2):183-200.
  • 7M. G. Moharam, T. K. Gaylord. Chain-matrix analysis of arbitrary-thickness dielectric reflection gratings [J]. J. Opt.Soc. Am., 1982, 72(2):187-190.
  • 8R. Jacobsson. Light Reflection from Films of Continuously Varying Refractive Index [M]. Progress in Optics, Vol. 5, 249-286, ed. E. Wolf (Amsterdam: North Holland Publishing Company and New York:. J. Wiley and Sons, 1965).

同被引文献6

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部