摘要
The influence of gas high-temperature hot corrosion(HTHC) pre-exposure on low-cycle fatigue(LCF)behavior was characterized for the directionally solidified(DS) Ni-based superalloy DZ125. Fatigue tests were carried out at 850 ℃ in the pre-exposed and unexposed specimens for 2, 15 and 25 h. Experimental results show that the porous corrosion scale and γ′-depleted layer formed in gas hot corrosion condition alter the crack initiation mechanisms of the superalloy. Fatigue cracks of the pre-exposed specimens originate from multiple surface locations where spalling of the corrosion products occur,while nucleation of unexposed specimen begins in the defects close to the surface. There is a significant reduction in LCF behavior for pre-exposed specimens in comparison with unexposed specimens.
The influence of gas high-temperature hot corrosion(HTHC) pre-exposure on low-cycle fatigue(LCF)behavior was characterized for the directionally solidified(DS) Ni-based superalloy DZ125. Fatigue tests were carried out at 850 ℃ in the pre-exposed and unexposed specimens for 2, 15 and 25 h. Experimental results show that the porous corrosion scale and γ′-depleted layer formed in gas hot corrosion condition alter the crack initiation mechanisms of the superalloy. Fatigue cracks of the pre-exposed specimens originate from multiple surface locations where spalling of the corrosion products occur,while nucleation of unexposed specimen begins in the defects close to the surface. There is a significant reduction in LCF behavior for pre-exposed specimens in comparison with unexposed specimens.
基金
financially supported by the National Natural Science Foundation of China (No. 51571010)
the National Basic Research Program of China (No. 2015CB057400)