摘要
Abdominal aortic aneurysm(AAA) is one of the most common and catastrophic manifestations of the acute aortic syndrome that can be treated with endovascular aneurysm repair(EVAR) which requires a specially designed stent-graft system.In this work, a self-expanding nickel–titanium(nitinol) stent-graft system is aiming at AAA using finite element analysis(FEA) methods to analyze both fatigue behaviors and radial forces.Based on the systematic analysis of the parametric variations, a final stent-graft system was developed by the selection and arrangement of the individual stent components, targeting an optimal performance for the treatment of AAA.Experimental tests, animal tests and clinical trials were carried out to confirm the results.Both animal trials and clinical trials showed comparable curative effects with Medtronic Endurant stent-graft(SG) systems.
Abdominal aortic aneurysm(AAA) is one of the most common and catastrophic manifestations of the acute aortic syndrome that can be treated with endovascular aneurysm repair(EVAR) which requires a specially designed stent-graft system.In this work, a self-expanding nickel–titanium(nitinol) stent-graft system is aiming at AAA using finite element analysis(FEA) methods to analyze both fatigue behaviors and radial forces.Based on the systematic analysis of the parametric variations, a final stent-graft system was developed by the selection and arrangement of the individual stent components, targeting an optimal performance for the treatment of AAA.Experimental tests, animal tests and clinical trials were carried out to confirm the results.Both animal trials and clinical trials showed comparable curative effects with Medtronic Endurant stent-graft(SG) systems.
基金
supported by the National Key Research and Development Program of China (No.2018YFC1106600)