摘要
推广了定理1〔1〕的结果得到定理2及其推论,并说明其应用。
In this paper,the theory l(Best Linear Un-biased Estimate ) is expanded, and obtain theory 2: Suppose that T1T2……Tk are UnbiasedEstimates of Estimable function 9 (θ) , and the Covariances cov (TiTj) = cij <∞.If T = ∑biTi is the Best Unbiased Estimator of g(θ), for the linear combination class of Ti ( i = 1 .2…k ) , then it must be bi = α(ik+i) , i=1.2…k.In which α(ik+1) is the element of the inverse matrix A(-1) of matrix A= (cjj).Finally, as application of the result, the estimate of o2 in Analysis of Variance is discused.
出处
《天津轻工业学院学报》
1992年第2期39-42,共4页
Journal of Tianjin University of Light Industry
关键词
最优无偏估计
可估函数
Best unbiased estimator,Minimum Variance unbiasd estimate, Estimable function.