摘要
The cyclic voltammetry, current time curve at potential step and potential time curve of galvanostatic method were used to investigate the electrochemical behavior of Er(Ⅲ) in ErCl 3 LiClO 4 DMF(N, N dimethylformamide) system on Pt and Cu electrodes. Results indicate that the electroreducation of Er(Ⅲ) to Er(0) is irreversible on Pt and Cu electrodes, the diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol/L ErCl 3 0.1 mol/L LiClO 4 DMF system at 303 K are 1.96×10 -6 cm 2·s -1 and 0.081 respectively. The Er metal film was prepared by galvanostatic electrolysis on Cu electrode in ErCl 3 LiClO 4 DMF system at 40 A·m -2 (current density). The deposites composed of Er over 95%(mass fraction) were obtained.
The cyclic voltammetry, current time curve at potential step and potential time curve of galvanostatic method were used to investigate the electrochemical behavior of Er(Ⅲ) in ErCl 3 LiClO 4 DMF(N, N dimethylformamide) system on Pt and Cu electrodes. Results indicate that the electroreducation of Er(Ⅲ) to Er(0) is irreversible on Pt and Cu electrodes, the diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol/L ErCl 3 0.1 mol/L LiClO 4 DMF system at 303 K are 1.96×10 -6 cm 2·s -1 and 0.081 respectively. The Er metal film was prepared by galvanostatic electrolysis on Cu electrode in ErCl 3 LiClO 4 DMF system at 40 A·m -2 (current density). The deposites composed of Er over 95%(mass fraction) were obtained.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2002年第6期1210-1213,共4页
Transactions of Nonferrous Metals Society of China
基金
Project(0 0 0 7942 10 0 5 )supportedbytheThousand Hundred TentalentProjectFoundationofEducationOfficeofGuangdongProvinceChina