期刊文献+

Numerical simulation on rapid melting and nonequilibrium solidification of pure metals and binary alloys

Numerical simulation on rapid melting and nonequilibrium solidification of pure metals and binary alloys
下载PDF
导出
摘要 A heat and mass transfer modelling containing phase transformation dynamics is made for pure metals and binary alloys under pulsed laser processing. The nonequilibrium effects of processing parameters and physical properties are evaluated on the melting and solidification of pure metals (Al, Cu, Fe and Ni) and Al Cu alloys. It is shown that the energy intensity of laser beam and physical properties of metals and the solute concentration of alloys have important effect on the interface temperature, melting and solidification velocity, melting depth and non equilibrium partition coefficient. This situation is resulted from the interaction of heat transfer, redistribution of solute, solute trapping and growth kinetics. A heat and mass transfer modelling containing phase transformation dynamics is made for pure metals and binary alloys under pulsed laser processing. The nonequilibrium effects of processing parameters and physical properties are evaluated on the melting and solidification of pure metals (Al, Cu, Fe and Ni) and Al Cu alloys. It is shown that the energy intensity of laser beam and physical properties of metals and the solute concentration of alloys have important effect on the interface temperature, melting and solidification velocity, melting depth and non equilibrium partition coefficient. This situation is resulted from the interaction of heat transfer, redistribution of solute, solute trapping and growth kinetics.
出处 《中国有色金属学会会刊:英文版》 CSCD 2002年第6期1076-1080,共5页 Transactions of Nonferrous Metals Society of China
基金 project(G2 0 0 0 672 0 13 )supportedbytheStateMajorBasicResearchProject (973project)
关键词 快速熔化 非平衡态凝固 生长动力学 激光处理 数学模拟 二元合金 纯金属 rapid melting nonequilibrium solidification pulsed laser processing heat and mass transfer growth kinetics
  • 相关文献

参考文献13

  • 1Steen W M. Laser MaterialProcessing[M]. London: Springer-Verlag, 1994. 187-192.
  • 2Shingu P H, Ozaki R. Solidification rate in rapid conduction cooing[J]. MetallTrans A, 1975, 6A: 33-37.
  • 3Levi C G, Mehrabian R. Heat flow during rapid solidification of undercooled metaldroplets[J]. Metall Trans A, 1982, 13A: 221.
  • 4MacDonald C A, Malvexxi A M, Spaepen F. Picosecond time resolved measurements ofcrystallization in noble metals[J]. J Appl Phys, 1989, 65:129-136.
  • 5Qiu T Q, Tien C L. Heat transfer mechanisms during short pulse laser heating ofmetals[J]. J Heat Transfer, 1993, 115: 835-841.
  • 6Wang G X, Matthys M. Numerical modelling of phase change during rapidsolidification processes[J]. Int J Rapid Solidification, 1992, 35: 141-153.
  • 7Velde O, Rudiger F, Grundmann R. Theoretical and experimental investigation ofelectron beam surface remelting and alloys [J]. Metall Mater Trans, 2000, 31B(6):1405-1417.
  • 8Kolenda Z, Donizak J, Bocardo J C. Least-squares adjustment of mathematical modelof heat and mass transfer process during solidification of binary alloys[J]. Metall MaterTrans, 1999, 30B(1): 505-514.
  • 9Takeshita K, Matsunawa. Numerical simulation of the molten pool formation duringthe laser surface melting process[J]. Metall Mater Trans, 2001, 32B(5): 949-968.
  • 10Turnbull D. ‘Principles of Solidification' in Thermodynamics in PhysicalMetallurgy[M]. Metals Park, OH: American Society for Metals, 1949. 283-306.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部