期刊文献+

可压缩流计算的九分笛卡尔网格技术 被引量:1

Nonet-Cartesian Grid Method
下载PDF
导出
摘要  简要介绍了一种新的二维网格技术———九分笛卡尔网格技术.与传统方法将一个网格等分为4个不一样,该方法将一个网格单元等分为9个.同时考虑各向同性和各向异性加密,能够对激波和壁面附近进行快速加密,并且有效节省了网格点数目.用此方法计算了单个翼型、多个翼型及直管道下壁面带凸包的无粘带激波的流动. An automatic Nonet\|Cartesian grid method is presented together with Euler solutions of flows around complicated geometries. Grids are generated automatically by the recursive subdivision of a single cell into nine subcells for isotropic Nonet\|Cartesian grids and into three subcells independently in each direction for anisotropic Nonet\|Cartesian grids, encompassing the entire flow domain. The grid generation method is applied here to steady inviscid shocked flow computation. Results using this approach demonstrate that this method provides a simple and accurate procedure for solving flow problems with shock waves.
作者 栗可 吴子牛
出处 《计算物理》 CSCD 北大核心 2003年第6期498-502,共5页 Chinese Journal of Computational Physics
关键词 可压缩流 九分笛卡尔网格 各向异性 无粘流动 激波 Godunov方法 凸包流动 nonet-Cartesian grid anisotropic inviscid flow shock wave
  • 相关文献

参考文献6

  • 1[1]Quirk J. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies [J]. Computers Fluids, 1994,125- 142.
  • 2[2]Berger M J, LeVeque R. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries [ R ].AIAA Paper-89-1930,1989.
  • 3[3]Wu Z N. A genuinely second-order accurate method for viscous flow computations around complex geometries [A]. In the 15th Conf Numer Meth F1 Dyn, Monterey, USA, June 24-28,1996.
  • 4[4]Wu Z N. Anisotropic Cartesian grid approach for viscous flow computations, CFD Review [ C ]. World Scientific,1998,93 - 113.
  • 5[5]De Zeeuw D, Powell K G. An adaptively refined Cartesian mesh solver for the Euler equations [ J ]. J Comput Phys,1993,56 - 68.
  • 6[6]Toro E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction [ M ]. New York: Springer,1999, 201-218.

同被引文献9

  • 1Thompson J F, Weatherill N P. Aspects of numerical grid generation : current and art. AIAA-93-3539, 1993.
  • 2Giuseppe B, Aldo F. Variational analysis and aerospace engineering. New York : Springer, 2009.
  • 3Darren L D Z. A quadtree-based adaptively-refined Cartesian-grid al- gorithm for solution of the Euler equations. Michigan: University of Michigan, 1993.
  • 4Willian J C. An adaptively-refined, cartesian, cell-based scheme for the Euler and Navier-Stokes Equations. Michigan: University of Michigan, 1994.
  • 5Tomasz P, Timur J L, Vincent G W. Adaptive mesh refinement-theo- ry and applications. New York: Springer, 2005.
  • 6Dadone A, Grossman B. Ghost-cell method for inviscid two-dimen- sional flows on cartesian grids. AIAA Journal, 2004; 42( 12)2499- 2507.
  • 7Lock R C. Test cases for numerical methods in two-dimensional tran- sonic flows. Advisory Group for Aerospace Research and Development(AGARD)-R-575 , 1970.
  • 8Yoshihara H, Sachet P. Test cases for invisid flow field methods. Advisory Group for Aerospace Research and Development (AGARD) -AR-211, 1985.
  • 9Liou M S. A sequel to AUSM, Part ]] : AUSM -up for all speeds. Journal of Computational Physics, 2006 ; 214 ( 1 ) : 137-170.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部