摘要
本文考虑如下高阶多点边值问题:x(n)=f(t,x,x',…,x(x-1),x(0)=x(ξ)=(1)=x'(ξ)=…=x(n-3)(ξ)=0,其中ξ∈(0,1).对于f有非线性增长的情况,利用基于度理论的不动点定理,建立了某些存在唯一性定理.
In this paaper the following higher order multipoint boundary value problem: x(n)=f(t, x, x', ...,x(x-1) ),x(0) =x(ξ) =x(1) =x' (ξ) = ... =x(x-3) (ξ) = 0 is conidered for ξ∈ (0, 1). For the case that f has noalinear growth, some existence and uniqueness theoreme for above problem are established by using certain fixed point theorem based on the degree theory.
出处
《数学研究》
CSCD
1995年第4期54-63,共10页
Journal of Mathematical Study
关键词
边值问题
不动点定理
唯一性
存在性
非线性增长
Higher order multipoint boundary value problem, Nonlinear growth, Fixed point theorem