摘要
本文提出了一种用于设计径向基函数(RBF)网络的递阶免疫算法,并将采用这种递阶免疫算法设计的RBF网络用于DS-CDMA系统的多用户检测.该方法利用递阶免疫算法确定RBF网络隐层(非线性层)的结构和参数,采用最小二乘算法计算RBF网络的输出层权值.递阶免疫算法针对RBF网络的特点引入免疫算子,能够有效提高群体的适应度,加快算法的收敛速度.仿真结果表明,基于这种RBF网络的多用户检测器具有较强的抑制多址干扰和克服远近效应的能力。
A novel Radial Basis Function (RBF) training method based on hierarchical immune algorithm is proposed and applied in the multiuser detection of DS-CDMA system. In this method hierarchical immune algorithm is used to determine the structure and parameters of RBF nonlinear hidden layer, and weights of RBF linear output layer are computed with least square method. Through introducing the immune operator based on the characteristic of RBF network, hierarchical genetic algorithm improves the fitness of population and increases the convergence speed. Simulation results demonstrate that multiuser detector based on the proposed RBF network has strong abilities in eliminating multiple access interference (MAI) and combating 'near-far' problems.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2003年第4期500-505,共6页
Pattern Recognition and Artificial Intelligence