期刊文献+

一种新型的RBF网络多用户检测器

A NOVEL RBF MULTIUSER DETECTOR
原文传递
导出
摘要 本文提出了一种用于设计径向基函数(RBF)网络的递阶免疫算法,并将采用这种递阶免疫算法设计的RBF网络用于DS-CDMA系统的多用户检测.该方法利用递阶免疫算法确定RBF网络隐层(非线性层)的结构和参数,采用最小二乘算法计算RBF网络的输出层权值.递阶免疫算法针对RBF网络的特点引入免疫算子,能够有效提高群体的适应度,加快算法的收敛速度.仿真结果表明,基于这种RBF网络的多用户检测器具有较强的抑制多址干扰和克服远近效应的能力。 A novel Radial Basis Function (RBF) training method based on hierarchical immune algorithm is proposed and applied in the multiuser detection of DS-CDMA system. In this method hierarchical immune algorithm is used to determine the structure and parameters of RBF nonlinear hidden layer, and weights of RBF linear output layer are computed with least square method. Through introducing the immune operator based on the characteristic of RBF network, hierarchical genetic algorithm improves the fitness of population and increases the convergence speed. Simulation results demonstrate that multiuser detector based on the proposed RBF network has strong abilities in eliminating multiple access interference (MAI) and combating 'near-far' problems.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2003年第4期500-505,共6页 Pattern Recognition and Artificial Intelligence
关键词 RBF网络 多用户检测器 递阶免疫算法 神经网络 码分多址 数字蜂窝移动通信 Multiuser Detection, Radial Basis Function Network, Hierarchical Genetic Algorithm, Least Square Method
  • 相关文献

参考文献9

  • 1Brehler M, Varanasi M K. Optimum Multiuser Noncoherent DPSK Detection in Generalized Diversity Rayleigh-Fading Channels. IEEE Trans on Communications, 2003, 51(3) : 366 - 370
  • 2Chuah T C, Sharif B S, Hinton O R. Robust CDMA Multiuser Detection Using a Neural-Network Approach. IEEE Trans on Neural Networks, 2002, 13(6): 1532-1539
  • 3Ko K B, Choi S, Kang C, Hong D. RBF Multiuser Detector with Channel Estimation Capability in a Synchronous MC-CDMA System. IEEE Trans on Neural Networks, 2001, 12(6): 1536- 1539
  • 4Tanner R, Cruickshank D G M. RBF Based Receivers for DS-CDMA with Reduced Complexity. In: Proc of the IEEE International Symposium on Spread Spectrum Techniques & Applications, 1998,647 - 615
  • 5Chen S, Wu Y, Luk B L. Combined Genetic Algorithm Optimization and Regularized Orthogonal Least Squares Learming for Radial Basis Function Networks. IEEE Trans on Neural Networks, 1999,10(5): 1239- 1243
  • 6Billings S A, Zheng G L. Radial Basis Function Network Configuration Using Genetic Algorithms. Neural Networks, 1995, 8 (6) :877- 890
  • 7Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithms for Radial Basis Function Netwroks. IEEE Trans on Neural Networks, 1991, 2(2) : 302 - 309
  • 8Licheng Jiao, Lei Wang. A Novel Genetic Algorithm Based on Immunity. IEEE Trans on Systerns, Man, and Cybernetics, 2000, 30(5): 552-561
  • 9石红瑞,刘勇,刘宝坤,李光泉.基于混合递阶遗传算法的径向基神经网络学习算法及其应用[J].控制理论与应用,2002,19(4):627-630. 被引量:27

二级参考文献12

  • 1Moody J, Darken C. Fast learning in networks of locally-tuned pro cessing units [J]. Neural Computation, 1989,2(2):281-284
  • 2Lippmann R P. Pattern classification using neural networks [J]. IEEE Communication Magazing, 1989,27( 11 ): 47 - 64
  • 3Chen S, Cowan C F N, Grant P M. Orthogonal least square algo rithm for radial basis function networks [ J]. IEEE Trans. on Neural Networks, 1991,2(2) :302 - 309
  • 4Chen S, Grant P M, Cown C F N. Orthogonal least-squares algorithm for training multioutput radial basis function networks [ J ]. IEEE Proceedings-F, 1992,139(6) :378 - 384
  • 5Chen S, Billings S A, Grant P M. Recursive hybrid algorithm for non-linear system identification using radial basis function networks[J]. Int. J. Control,1992,55(5):1051 - 1070
  • 6Platt J. A resource-allocating network for function interpolation [J]. Neural Computation, 1991,3(2) :213 - 225
  • 7Kadirkamnathan V, Niranjan M. A function estimation approach to sequential learning with neural network [J]. Neural Computation, 1993,5(6) :954 - 975
  • 8Lu Yingwei, Sundarajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks [J]. Neural Network, 1997,9(2):461-478
  • 9Lu Yingwei, Sundarajan N, Saratchandran P. Performance evaluation ora sequential minimal radial basis function (RBF) neural network learning algorithm [ J ]. IEEE Trans. on Neural Networks, 1998, 9 (2) :308 - 318
  • 10Man K F, Tang K S, Kwong S, et al. Genetic Algorithms for Con trol and Signal Processing [M]. London: Springer-Verlag, 1997

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部