期刊文献+

基于免疫识别原理和RFNN的复杂系统辨识 被引量:2

COMPLEX SYSTEMS IDENTIFICATION BASED ON IMMUNE IDENTIFICATION MECHANISM RFNN
原文传递
导出
摘要 本文借鉴免疫识别原理,结合递归模糊神经网络(RFNN),提出了一种新的基于免疫化递归模糊神经网络的复杂系统辨识方法.其基本思想是,将复杂系统模型分解为可变部分与不变部分,不变模型描述系统平均动态行为,可变模型描述不确定性造成的系统实际行为对平均行为的偏差.以RFNN的隶属度函数神经元为构件,用它的各种组合构造不同的RFNN模型覆盖系统的可变模型空间,应用时采用免疫遗传算法在线筛选合适构件构造可变模型,识别系统扰动.仿真结果表明该方法能有效完成复杂不确定系统的快速在线识别。 Using the antibody searching mechanism for reference and combining RFNN, a new immunized RFNN identification method for complex systems is developed in this paper. The method is described as follow: The complex system model is decomposed to two parts: invariable model and variable model which are both RFNN model. The invariable model describes the steady dynamic characteristics of the system, which is obtained offline using BP algorithm. The variable model describes the temporary model error of dynamic characteristics of the systems, which is constructed by a serial of building blocks. Because they are strong recapitulative, the membersip nodes of RFNN are adopted as the building blocks of the variable model. The space of variable models is covered by all kinds of the RFNN models combined by building blocks. When application, the proper building block combination is found on-line by the immune-genetic algorithm, which construct an appropriate variable model to identify the Disturbance of system. Simulation results are present. According to the results, complex systems can be identified on-line quickly by immunized RFNN identification method.
作者 徐雪松 诸静
出处 《模式识别与人工智能》 EI CSCD 北大核心 2003年第4期397-402,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.69904009)
关键词 递归模糊神经网络 免疫识别原理 RFNN 复杂系统辨识 隶属度函数 The Immune Identification Mechanism, Recurrent Fuzzy Neural Network, Complex Uncertain Systems Identification
  • 相关文献

参考文献5

  • 1Farmer J D, Packard N H. The Immune System Adaptation and Machine Learning. Physica D, 1986, (22): 187-204
  • 2Krishnakumar K, Neidhoefer J. Immunised Neurocontml. Expert System with Applications, 1997, 13(3) : 201 - 214
  • 3Jeme N K. The Immune System. Scientific American, 1973, 229(1): 52-60
  • 4Lee C H, Teng C C. Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks. Fuzzy Systems, 2000, 8(4) : 349 - 366
  • 5Chun J S, Kim M K, Jung H K, et al. Shape Optimization of Electromagnetic Devices Using Immune Algorithm. IEEE Trans on Magnetics, 1997, 33(2): 1876-1897

同被引文献34

  • 1程启明.基于模拟退火策略的混沌优化算法的模糊神经网络控制器的设计[J].测控技术,2004,23(8):31-32. 被引量:5
  • 2程启明.基于GA-BP的模糊神经网络控制器与Elman辨识器的系统设计[J].数学的实践与认识,2004,34(9):76-81. 被引量:6
  • 3方祟智 萧德云.过程辨识[M].北京:清华大学出版社,1988..
  • 4[1]Holland.J.H.Adaptation in Natural and Artificial Systems[M].The University of Michigan Press,1975.
  • 5[2]Golderg.D.E.Genetic Algorithms in Search,Optimization,and Machine Learning[M].Addison-Wesley Publishing Company,Inc,1989.
  • 6[3]Poths J.C,Giddens T.D,Yadaw S.B.The development and evaluation of an improved genetic algorithms based on migration and selection[J].IEEE Trans.SMC,1994,24(1);73-86.
  • 7[6]Kristinn Kristinsson,Guy A Dumout.System identification and control using genetic algorithms[J].IEEE Trans on systems,Man and Cybernetics,1992,22 (5):1033-1046.
  • 8[7]D Maclay,R Dorey.Applying genetic search techniques to driver train modeling[J].IEEE Control Systems,1993,(6):50-55.
  • 9[8]L Davis.Adapting operater probabilities in genetic algorithms.In:proc of the 3rd Int Conf on genetic Algorithms[J].San Mateo,1989.61-69.
  • 10[10]J Craig Potts,Terri D Gradens Surya B Yadav.The development and evaluation of an improved genetic algorithms based on migration and artificial selection[J].IEEE Trans on Systems,Man and Cybernetics,1994,24(1):73-86.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部