期刊文献+

基于支持向量机与极端保守在线算法相结合的多类分类器

A MULTI-CLASS CLASSIFIER BASED ON SUPPORT VECTOR MACHINES AND ULTRACONSERVATIVE ONLINE ALGORITHM
原文传递
导出
摘要 本文给出了一种将SVM和极端保守在线算法相结合的通用多类分类算法,算法利用最大置信度原则将离线训练的多个SVM组合成一个多类分类器.为了提高在线学习过程的实时性,同时保证分类器的推广能力,我们将K.Crammer等人提出的极端保守在线算法思想引入到分类器修正过程当中,修正过程中采用对应SVM的支持向量和错分样本作为训练集.实验表明,算法具有良好的实时性能,且具有良好的推广能力。 A new general multiclass classifying algorithm that combines Support Vector Machines (SVM) and ultra-conservative online algorithm is presented in this paper. Using maximum confidence principle, the algorithm combines several SVMs to make a multiclass classifier. In order to improve the algorithm's real time ability in learning process as well as the generalization ability of the classifier, the idea of ultraconservative online algorithm presented by K. Crammer, et al. is introduced into the modifying process of the classifier. During the course of modifying the classifier, only the Support Vectors (SVs) correspond to SVMs and the samples'that is classified incorrectly are used as the training sample set. The experiment result shows that the algorithm has good performance in real time ability as well as in the generalization ability.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2003年第4期476-481,共6页 Pattern Recognition and Artificial Intelligence
关键词 机器学习 学习算法 支持向量机 在线算法 分类器 Support Vector Machine, Ultraconservative Online Algorithm, Multiclass Classifier
  • 相关文献

参考文献17

二级参考文献39

  • 1[1]Vapnik V. The nature of statistical learning theory[M]. New York: Springer Press, 1995.
  • 2[2]Osuna E E, Girosi F. Reducing the run-time complexity of support vector machines[Z]. ICPR'98, Brisbane, 1998.
  • 3[3]Cortes C,Vapnik V. Support vector networks[J]. Machine Learning,1995,20(2):273-297.
  • 4[4]Bennett K P. Decision tree construction via linear programming[Z]. The Midwest Artificial Intelligence and Cognitive Science Society Conference, Utica, 1992.
  • 5Hu Yuhen,IEEE Signal Processing Magazine,1997年,11卷,39页
  • 6边肇祺,模式识别,1988年
  • 7阳含熙,植物生态学的数量分类方法,1981年
  • 8Zhang Xuegong,IEEE Workshop on Neural Networks for Signal Pro-cessing,1999年
  • 9王碧泉,模式识别理论、方法和应用,1989年
  • 10VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..

共引文献2430

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部