摘要
根据量子力学态叠加原理,构造了由多模复共轭相干态|{zj(a)}>q和多模复共轭相干态的相反态等幂次|{-zj(b)}>q的线性叠加所组成的振幅不等的非对称两态叠加多模叠加态光场|Ψn(2)>q(j=1,2,3,…,q),利用多模压缩态理论研究了态|Ψn(2)>q的等幂次N次方Y压缩特性。结果表明:在各模的平均光子数不相等而对应模的初始相位相等亦即Rj(a)≠Rj(b)且ψj(a)=ψj(b)=ψj的条件下,如果各模的初始相位ψj和态间的初始相位差θpq(R)-θnq(R)=△θ满足一定取值关系,则无论压缩次数N为奇数还是偶数,态|Ψn(2)>q的两个正交相位分量均可分别呈现周期性变化的等幂次N次方Y压缩效应,但N是奇数时的压缩深度大于N是偶数时的压缩深度。
Based on the superposition of state in the quantum mechanics,the multi-mode superposition |Ψn(2), is mode of the multi-mode complex conjugate coherent state | {z^ } >, and the contrary state | { - zj(b)'}>q of multi-mode complex conjugate coherent state | { - zj(b)* }>q (here j = 1, 2, 3,…, q). By using the multi-mode squeezed state theory,the equal-power Nth Power Y-Squeezing properties in the | Ψn(2)>q is studied. It is found that under the conditions of the amplitudes orresponding modes are unequal but the initial phases of corresponding modes are equal,scilicet Rj(a)≠Rj(b) and ψj(a)=ψj(b)=ψj,the two quardrature phase components of state |Ψn(2)>q can always display respectively the equal-power Nth power Y-squeezing effects which changes periodically while some conditions are satisfied respectively by the initial phase <pj of each mode and initial phase difference θpq(R) -θnq(R) =Δθ between the two components of the state | Ψn(2)>q whether squeezing-order-number N is odd number or even number, but squeezing-intensity under N is odd number, bigger than squeezing-intensity under N being even number.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第6期636-640,共5页
Journal of Northwest University(Natural Science Edition)
基金
陕西省自然科学基金资助项目(2001SL04)
陕西省科技攻关项目(2002K05-G9)
江苏技术师范学院科研基金资助项目
关键词
多模相干态
非对称两态叠加
多模叠加态光场
等幂次N次方Y压缩
multi-mode coherent stat
multi-mode superposition light field state with two nonsymmetry quantum State
equal-power N th power Y-squeezing