期刊文献+

基于源信号之间统计独立性的 ICA方法的等价性研究 被引量:1

Study on the Equivalence ICA Methods of the Based on the Statistical Independence
下载PDF
导出
摘要 引入了基本ICA问题的发生模型;通过对基于源信号之间统计独立性的三种基本ICA方法(极大似然法、最大信息法和最小互信息法)的推导结果的对比,得出了这三种算法是完全等价的结论;并通过仿真实验,验证了这些算法的有效性。 This paper presents the generation model of independent component analysis(ICA) problem. Three statistics independence based ICA methods, the Maximum likelihood, the Infomax, and the Minimum Mutual Information, are studied by deriving and comparing their iteration equations. The results of the study show that the three methods are totally the same although they are derived from different criterion and cost functions. Simulation for separating a mixed signal is conducted, which verifies the validity of these kinds of ICA methods.
出处 《探测与控制学报》 CSCD 北大核心 2003年第4期21-25,共5页 Journal of Detection & Control
基金 国家自然科学基金资助项目(30170259)(60172072) 国家973专项资助项目(2001CCA00700) 辽宁省科学技术基金资助项目(2001101057)
关键词 独立分量分析 源信号 极大似然法 最大信息法 最小互信息法 ICA source signal maximum likelihood infomax minimum mutual information
  • 相关文献

参考文献10

  • 1Hyvarinen A,Oja E. Independent component analysis: algorithms and applications[J].Neural Networks, 2000 ,13:411-430.
  • 2Hyvarinen A.Survey on independent component analysis[J]. Neural Computing Surveys,1999,2:94-128.
  • 3Amari S,Cichocki A,Yang H H. A new learning algorithm for blind source separation [J].In Advances in Neural Information Processing Systems,1996,8:757-763.
  • 4Cardoso J F. High-order contrasts for independent component analysis[J]. Neural Computation, 1999,11:157-192.
  • 5Bell A J, Sejnowski T J. An Information-Maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7(6):1129-1159.
  • 6Comon P. Independent component analysis: A New concept?[J]. Signal Processing,1994,36:287-314.
  • 7Hyvarinen A. Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood[J]. Neurocomputing,1998,22:49-67.
  • 8Lee T, Girolami M,Bell A J, et al. A unifying information theoretic framework for independent component analysis[J]. Computers and Mathematics with Applications ,2000,39:1-21.
  • 9Cardoso J F. Informax and maximum likelihood for blind source separation[J]. IEEE Signal Processing letters ,1997,4:112-114.
  • 10Hyvariene A ,Karhunen Juha, Oja Erkki. Independent Component Analysis[M].New York: John Wiley &Sons Inc.,2001.

同被引文献5

  • 1何为伟,肖俊,楼建东,王映民.基于高斯矩的NoisyICA研究[J].微计算机信息,2005,21(5):212-213. 被引量:3
  • 2张云,周剑利,郭建波,郝志华.时频分析和盲源分离在发电机转子系统故障诊断中的应用[J].微计算机信息,2005,21(10S):140-141. 被引量:10
  • 3COMON P, et al.Independent component analysis:A New concept?[J].Signal processing, 1994,36:287-314.
  • 4J.F.Cardoso,et al.Eigen-structure of the four-order cumulant tensor with application to the blind source separation problem. Proc. IEEE ICASSP,1990: 2655-2658.
  • 5Pierre Comon. Blind Identification and Source Separation in 2×3 Under-determined mixtures. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 52(1), 2004:1-13.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部