期刊文献+

高维高阶非线性抛物方程整体解的存在性 被引量:1

The existence of the global solution to the nonlinear parabolic equation with high order in high dimension
下载PDF
导出
摘要 在三维空间中考虑带高阶非线性项的复Ginzburg-Landau方程,通过引入权空间,应用内插不等式和先验估计,获得复Ginzburg-Landau方程整体解的存在性,更进一步,使用在权空间算子分解的方法,通过构造紧的正向不变吸收集,建立了整体强吸引子的存在性。 By considering the complex Ginzburg-Landau equation with high order and nonlinear term in three dimensions,by introducing the weighted space and interpolating inequality and prior estimate,the existence of the global solution of the complex Ginzburg-Landau equation is obtained.By further using the method of decomposing operator in wieghted space and constructing compact positively invariant sets,the existence of the strong global attractor is established.
出处 《广西工学院学报》 CAS 2003年第4期1-8,共8页 Journal of Guangxi University of Technology
关键词 高维高阶非线性抛物方程 整体解 存在性 复GINZBURG-LANDAU方程 无界区域 权空间 complex Ginzburg-Landau equation, unbounded domain, weighted space ,global solution
  • 相关文献

参考文献9

  • 1[1]J-M. Ghidaglia and B. Héron. Dimension of the attactor associated to the Ginzburg -Landau equation, Phys[J]. 28D, (1987):282-304.
  • 2[2]C. Doering, J. D. Gibbon,D. Holm and B. Nicolaenko. Low-dimensional behavior in the complex Ginzburg-Laudau equation [J] . Nonlinearity, Vol. 1, (1988) :279-309.
  • 3[3]K. Promislow. Induced trajectories and approximate inertial manifolds for the Ginzburg-Laudau partial equation[J]. Physica D,41 (1990): 232-252.
  • 4[4]M. Bartuccelli,P. Constantin,C. Doering,J. D,Gibbon and M. gisself quot; alt. On the possibility of soft and hard turbulence in the complex Ginzburg-Laudau equation[J]. Physica D, 44, (1990): 421-444.
  • 5[5]C. Bu. On the Cauchy problem for the 1+2 complex Ginzburg-Laudau equation[J]. Austral math . Soc. Ser. B, 36 (1994):313-324.
  • 6[6]C. R. Doering,J. D. Gibbon and C. D. Levermore. Weak and strong solutions of the complex Ginzburg-Laudau equation[J].Phys. 71D (1994) :285-318.
  • 7[7]A. Mielke. The complex Ginzburg-Laudau equation on large and unbonded domains :sharper bounds and attractors[J].Nonlinearity 10 (1997): 199-222.
  • 8[8]F. Abergel. Existence and finite dimensionality of the global attractor for equations in a unbonded domain[J]. J. Diff. Equ,1990,83-108.
  • 9[9]A. V. Babin and Vishik. Attractors of partial differential evolution equations in a unbonded domin[J]. Pro. Roy. Soc.Edinburg (Series A),1990,116:221- 243.

同被引文献3

  • 1A.V.Babin and Vishik. Attractors of partial differential evolution equations in a unbonded domin. Pro.Roy.Soc.Edinburg (Series A)[J].1990,116:221-243.
  • 2A.Mielke ,Attractors for modulation equations on unbonded domaines :existence and comparison[J].Nonlinearity 8(1995)743-768.
  • 3R.Temam. Infinite Dimensional Dynamical systems in Mechanics and Physics[M]. Springer,New York,1988.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部