期刊文献+

ARMAX系统不外加输入激励的辨识 被引量:1

IDENTIFICATION OF ARMAX SYSTEMS WITHOUT USING EXTERNAL INPUT EXCITATION
原文传递
导出
摘要 本文在不外加输入激励情况下,讨论了开环不稳定和非最小相位的ARMAX系统系数的一致估计。所用方法是用适应镇定的办法,使得闭环系统成为平稳可逆的ARMA过程。然后利用Yule-Walker方程给出闭环系统系数的一致估计,而把求开环系统系数的一致估计归结为解一组线性代数方程。 Without introducing any external excitation to the system input, this paper gives consistent estimates for the coefficients of an ARMAX system, which is allowed to be unstable and of nonminimum-phase. The approach is as follows: by an adaptive stabilization method the resulting closed-loop system turns to be a stable and invertiable ARMA process. Then the consistent estimates for coefficients of the closed-loop system are derived by using the Yule-Walker equation, while the consistent estimates for coefficients of the open-loop system are obtained by solving a system of linear algebraic equations.
出处 《应用数学学报》 CSCD 北大核心 2003年第4期577-589,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(60075019号)
关键词 ARMAX系统 Yule-Walker方程 闭环系统 开环系统 系统辨识 System identification, ARMAX system, adaptive stabilization, stability, strong consistency
  • 相关文献

同被引文献3

  • 1Chen Hanfu, Cao Xianbing, Fang Haitao. Stability of adaptively stabilized stochastic systems[J]. IEEE Trans.Automatic Control, 2001, 46(11) : 1832--1836.
  • 2Stout W F. A martingale analogue of koimogorov's law of the iterated logarithm[J]. Z Wahr verw Geb, 1970. 15:279--290.
  • 3Chen H F. Recursive Estimation and Control for Stochastic System[M]. Wiley, New York, 1985.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部